Like all life on earth, plants need water to survive and grow. Indeed, like humans, water is the primary element that makes up the structure of plants. Human bodies are comprised of around 70 percent water, but in plants this proportion can be as much as 95 percent. Water is also essential to the way a plant receives nutrients and provides energy for itself. Thus, water is arguably the most essential substance required by plants. That is why many elements of permaculture design – from using swales and contouring to slow runoff from the land and allowing it to sink into the soil to mulching to prevent evaporation of moisture from the soil surface – emphasis the preservation of water so that it can be provided to plants.
hope this helped :)
alisa202
Functional and economically most important mineral in nutrition of layers
is calcium, primary because of egg production, i.e. forming of the egg shell.
The answer is when levels of the amino acid are high, it binds to the repressor, ending the synthesis of this amino acid
Aero is the prefix for oxygen or air
Aerobic= needs air
Anaerobic=no air needed
Answer:
Chloroplast absorbs sunlight and it is used to make feed for the plant together with water and carbon dioxide gas. Chloroplasts are used to generate the free energy stored in ATP and NADPH via a photosynthesis process.
Explanation:
The site of photosynthesis action is chloroplast within a plant cell consisting of two chlorophyll molecules (PS1 and PS2), which have been embedded in the thylakoid membranes. The chloroplast consists of two chlorophyll molecules (photosynthetic pigments responsible for the green color of chloroplast). Each chlorophyll molecule absorbs light, caused to depart the chlorophyll molecules. This absorbs two electrons from each phenotype. PS2 electrons pass through the transportation chain for electron carriers, a series of redox reactions that release the energy used to synthesize ATP via Photophosphorylation/Chemiosmose (as the H+ ions diffuse through the stalked particles ATP, which changes the shape and catalysts, the electrochemical gradient diffuses down through the stalky particle ATP synthase).
Then these electrons replace the electrons lost in PS1. PS2 electron is replaced by photolysis electron, which when light strikes chloroplast, splitting the water into oxygen gas, H+ ions, and electron enzymes in the thylakoid space are catalyzed. The PS1 electrons combine to create NADPH with H+ ions and NADP (reduced NADP). These are the light-dependent photosynthetic reactions in chloroplasts. In the light-independent reactions, the NADPH and ATP are created. A pile of thylakoids is known as granum.
The light-independent processes take happen in the stroma. This is the site of carbon fixation; CO2 reacts with RUBP to generate GP (glycerate-3-phosphate) which is catalyzed by the enzyme RUBISCO (the most abundant enzyme in the world) (the most abundant enzyme in the world). The NADPH and ATP from the light-dependent processes convert GP to GALP (glyceraldehyde 3-phosphate). Two out of every 12 GALP molecules produced are used to synthesize glucose that can be employed either in breathing or in cellulose-forming condensation polymerization to add extra strength to the planted cell wall. The other GALP molecules are returned to RUBP.