1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
11

Solve for y. 16 = y/5 + 15

Mathematics
1 answer:
Contact [7]3 years ago
7 0

Answer:

Y = 1 essssssszzzzzzssy

You might be interested in
Find an expression equivalent to 4x – 4 – 2x + 3.<br> 2x – 1<br> 6x – 1<br> 2x – 7<br> –2x + 3
BigorU [14]
6x-1 because you combine like terms 4x+2x=6x and then -4+3=-1
6 0
3 years ago
Read 2 more answers
Solve the one step equation: -5a = -50
Margaret [11]

Answer:

a = 10

Step-by-step explanation:

a = 10

Divide -5 on both sides

5 0
3 years ago
Read 2 more answers
The sum of two numbers is 33 and thier difference is 2 find the number
sammy [17]

Answer:

17.5 + 15.5

Step-by-step explanation:

17+ 15 = 32

.5 + .5 = 1

32 + 1 = 33

6 0
3 years ago
Read 2 more answers
What is the negative reciprocal of -0.3
Mazyrski [523]

Answer:

3.33333333333

Step-by-step explanation:

flip the number

7 0
3 years ago
Read 2 more answers
If
baherus [9]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: cos 330 = \frac{\sqrt3}{2}

Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

\text{Scratchwork:}\quad \bigg(\dfrac{\sqrt3 + 2}{2\sqrt2}\bigg)^2 = \dfrac{2\sqrt3 + 4}{8}

Proof LHS → RHS:

LHS                          cos 165

Double-Angle:        cos (2 · 165) = 2 cos² 165 - 1

                             ⇒ cos 330 = 2 cos² 165 - 1

                             ⇒ 2 cos² 165  = cos 330 + 1

Given:                        2 \cos^2 165  = \dfrac{\sqrt3}{2} + 1

                              \rightarrow 2 \cos^2 165  = \dfrac{\sqrt3}{2} + \dfrac{2}{2}

Divide by 2:               \cos^2 165  = \dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \bigg(\dfrac{2}{2}\bigg)\dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \dfrac{2\sqrt3+4}{8}

Square root:             \sqrt{\cos^2 165}  = \sqrt{\dfrac{4+2\sqrt3}{8}}

Scratchwork:            \cos^2 165  = \bigg(\dfrac{\sqrt3+1}{2\sqrt2}\bigg)^2

                             \rightarrow \cos 165  = \pm \dfrac{\sqrt3+1}{2\sqrt2}

             Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

                             \rightarrow \cos 165  = - \dfrac{\sqrt3+1}{2\sqrt2}

LHS = RHS \checkmark

4 0
4 years ago
Other questions:
  • a. Determine whether the Mean Value Theorem applies to the function f (x )equals ln 15 xf(x)=ln15x on the given interval [1 comm
    15·1 answer
  • A wallet is marked with a sale sticker saying it is 76% off. The original price is $57.41. What is the sale price?
    12·1 answer
  • Wes makes 35,000 a year at his job he is going to recieve 3% how much will he make aafter the raise
    6·1 answer
  • Help Eveaultaint the question
    6·1 answer
  • 7/8m+9/10-2m-3/5<br> Combine like terms to create an equivalent expression.
    5·1 answer
  • Luke received an inheritance of $15000 that he divided into three parts and invested in three ways: in a money-market (x) fund p
    9·1 answer
  • 3q+4+9=-14 <br> what is Q
    6·1 answer
  • Please solve this equation and show work please tysm 3(g−7)=2(10+g)
    7·2 answers
  • If x = 5, then which of the following equations makes a true statement?
    9·1 answer
  • How are multiplying fractions and whole numbers similar?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!