Answer:
1. ∠1 = 120°
2. ∠2 = 60°
3. ∠3 = 60°
4. ∠4 = 60°
5. ∠5 = 75°
6. ∠6 = 45°
Step-by-step explanation:
From the diagram, we have;
1. ∠1 and the 120° angle are corresponding angles
Corresponding angles are equal, therefore;
∠1 = 120°
2. ∠2 and the 120° angle are angles on a straight line, therefore they are supplementary angles such that we have;
∠2 + 120° = 180°
∠2 = 180° - 120° = 60°
∠2 = 60°
3. Angle ∠3 and ∠2 are vertically opposite angles
Vertically opposite angles are equal, therefore, we get;
∠3 = ∠2 = 60°
∠3 = 60°
4. Angle ∠1 and angle ∠4 an=re supplementary angles, therefore, we get;
∠1 + ∠4 = 180°
∠4 = 180° - ∠1
We have, ∠1 = 120°
∴ ∠4 = 180° - 120° = 60°
∠4 = 60°
5. let the 'x' and 'y' represent the two angles opposite angles to ∠5 and ∠6
Given that the two angles opposite angles to ∠5 and ∠6 are equal, we have;
x = y
The two angles opposite angles to ∠5 and ∠6 and the given right angle are same side interior angles and are therefore supplementary angles
∴ x + y + 90° = 180°
From x = y, we get;
y + y + 90° = 180°
2·y = 180° - 90° = 90°
y = 90°/2 = 45°
y = 45°
Therefore, we have;
∠4 + ∠5 + y = 180° (Angle sum property of a triangle)
∴ ∠5 = 180 - ∠4 - y
∠5 = 180° - 60° - 45° = 75°
∠5 = 75°
6. ∠6 and y are alternate angles, therefore;
∠6 = y = 45°
∠6 = 45°.
Answer:
A) The value of a is <u>29</u>.
B) The value of b is <u>greater than 29</u>.
C) In both part A and part B we have used a common property which is addition property and that we have add 9 on both side of equation in both parts.
D) The value of a in part A is equal to 29 whereas in part B the value of b is greater than 29.
Step-by-step explanation:
Solving for Part A.
Given,

We have to solve for a.

By using addition property of equality, we will add both side by 9;

Hence the value of a is <u>29</u>.
Solving for Part B.
Given,

We have to solve for b.

By using addition property of inequality, we will add both side by 9;

Hence the value of b is <u>greater than 29</u>.
Solving for Part C.
In both part A and part B we have used a common property which is addition property and that we have add 9 on both side of equation in both parts.
Solving for Part D.
The value of a in part A is equal to 29 whereas in part B the value of b is greater than 29.
The second option 0.04 is greater
Since the radius is the same but the height changes, the volume would change by the multiple of the height.
In this case the volume of the larger cone would be 4 times as large as the smaller cone so you would need 4 small cones