1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
15

Help with num 1 please.​

Mathematics
1 answer:
KengaRu [80]3 years ago
6 0

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
OF THE 200 PACKAGES OF BAGELS SOLD , 15 OF THEM ARE SESAME SEED BAGLES. WHAT PERCENT OF THE BAGEL PACKAGES SOLD ARE SESAMES SEED
andrezito [222]
Write a proportion. x = variable/answer

15              x
200        100

1500/200=7.5

7.5%
4 0
3 years ago
Read 2 more answers
What is the percent increase from 2,000 to 3,000
WINSTONCH [101]
50% should be the present increase :)
3 0
3 years ago
A baseball team played 32 games and lost 8. Katy was a catcher in 5/8 of the winning game and 1/4 of the losing games. In how ma
lana66690 [7]

32 - 8 = 24. This means that there were 24 winning games and 8 losing games.

24 multiplied by 5/8 = 15. Katy was a catcher in 15 of the winning games.

8 multiplied by 1/4 = 2. Katy was a catcher in 2 of the losing games.

In total, Katy was a catcher in 17 of the games.

6 0
3 years ago
Read 2 more answers
Work the following problems using the table. Choose the correct answer.
kakasveta [241]

Answer:

option 3

$46.02

Step-by-step explanation:

First we have to look at the value of the French francs with respect to the dollars, we will look at the option of Wednesday which is how the problem asks.

if we see in the table it tells us that every 1 french franc gives us 0.2301 dollars

Now if we have 200 French francs, how many dollars will they give us?

1 = 0.2301

200 = ?

200 * 0.2301 / 1 =

46.02

5 0
3 years ago
The volume of the cylinder is 5275 ft and the height is 23 find the diameter please explain this is for school tomorrow
stepan [7]

\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} V=5275\\ h=23 \end{cases}\implies 5275=\pi r^2(23)\implies \cfrac{5275}{23\pi }=r^2 \\\\\\ \sqrt{\cfrac{5275}{23\pi }}=r\implies 15.144\approx r~\hspace{10em}\stackrel{diameter=2r}{d\approx 30.288}

4 0
3 years ago
Other questions:
  • What is the area of a traingle with base 19 inches and height 11 inches?
    9·1 answer
  • 81 is 18% of what number?
    6·2 answers
  • 360 x 10 to the 3rd power over 1.8 x 10 to the negative 5th power evaluated in scientific notation. Please explain
    10·1 answer
  • Find the value of x for which ABCD must be a parallelograms
    9·1 answer
  • What us the answer to the equation 6r-1-6r=11
    14·1 answer
  • Please help with this.
    10·1 answer
  • Solve........................​
    7·1 answer
  • A model to represent<br> the following problem.<br> 2 x 7
    10·1 answer
  • I need help. I'm confused ​
    6·1 answer
  • Examine the figure. What is the measure of angle b?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!