1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
15

Help with num 1 please.​

Mathematics
1 answer:
KengaRu [80]3 years ago
6 0

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Someone help pls!!!!!!!!!!!
Gemiola [76]
The answer is no question for you lol
7 0
3 years ago
Help asap pls!!!! i need the questions answered also !!
Vikki [24]

Answer:

it wold be A

Step-by-step explanation:

5 0
3 years ago
Each day a small business owner sells 200 pizza slices at $3.00 per slice and 85 sandwiches at $2.50 each. Business expenses com
klio [65]

How much are the owner's expenses for 10 days?

10 * 130 = $1300

 

How much money does the owner make selling pizzas per day?

200 * 3 = $600

 

How much money does the owner make selling sandwiches per day?

85 * 2 = $170

 

In one day, the owner sells 600 + 170 = $770 worth of pizza and sandwiches

 

Over the course of ten days, that is 10 * 770 = $7700

 

Profit = revenue - cost = 7700 - 1300 = $6400


There ya go

5 0
3 years ago
Which of these is the algebraic expression for "3 times the sum of 2 and y?"
max2010maxim [7]

Answer:

the answer is 3(2+y)

Step-by-step explanation:

i commented that first it would not let me answer

]

7 0
3 years ago
Read 2 more answers
What number minus one-half is equals to negative one-half
jarptica [38.1K]

Answer:

0

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • When a principal amount, P, is invested at an annual interest rate, r, and compounded n times per
    15·1 answer
  • A store manager wants to arrange 36 cans of cherry-pie filling in an array. What are 3 ways the cans could be displayed?
    5·1 answer
  • Evaluate. 5.4 - 1.3
    9·2 answers
  • What is 245 the the power of 8?​
    15·1 answer
  • 2
    6·1 answer
  • PLS HURRY WILL GIVE BRANLIEST AS USUAL
    5·2 answers
  • On average Earth is 149.6x10^6 km away from the Sun , and Pluto is 5.9x10^9 What is the difference between Pluto's average dista
    8·1 answer
  • Consider the line y=8x-2 find the equation of the line that is parallel to this line and passes through the point (-5,2)
    8·1 answer
  • Translate the following word phrase into an algebraic expression.
    15·1 answer
  • Please answer question
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!