1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
15

Help with num 1 please.​

Mathematics
1 answer:
KengaRu [80]3 years ago
6 0

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

You might be interested in
Jordan has been offered two summer jobs. One job is at the mall and pays $7 per hour. the other job is with your neighbor, who w
Masja [62]
7x=5x+50
2x=50
x=25

Jordan would have to work 25 hours per week in order for both jobs to pay the same amount.
8 0
3 years ago
Read 2 more answers
Solve the equation 6(x + 2) = 3(2x + 4).How many solutions are there? Show your work ​
Naily [24]
6(x + 2) = 3(2x + 4)
STEP ONE:
Multiply both sides
6x + 12 = 6x + 12
STEP TWO:
You can see both sides are identical, therefore you can conclude there are infinite solutions

ANSWER: Infinite Solutions
6 0
3 years ago
Ummmmmmm wats 1pls9 i ned hlep imm in 2nd grd and ned hlp
zaharov [31]
It is 10 9 +1=10 ........
3 0
3 years ago
What is the difference of 54.59 and 26.61?
Vilka [71]
54.59 - 26.61 is 27.98. Hope it helps! :) If you could vote my answer as the brainliest, that would be awesome! :)
4 0
3 years ago
How many 4 minutes and 30 seconds in 2 hours
AleksAgata [21]

4 minutes and 30 seconds go into 2 hours 26 times

119

7 0
4 years ago
Read 2 more answers
Other questions:
  • A spinner is divided into 8 equal sections. lara spins the spinner 120 times. it lands on purple 30 times. how many more times d
    5·1 answer
  • 14. Ginny has 26 tests to correct. It takes her
    5·2 answers
  • I NEED HELP ASAP!!
    12·1 answer
  • An arithmetic sequence has first term 25 and common difference 3. Find the 50th
    13·1 answer
  • What is the equation of the line in slope intercept form? I WILL GIVE BRAINLY
    6·2 answers
  • A team t0shirt costs $3 per adult and $2 per child. On a certain day, the total number of adults
    8·1 answer
  • 75 + 13 + ?? = 140 i dont know what it is.
    9·2 answers
  • WILL GIVE BRAINLIEST
    10·2 answers
  • Rewrite the following in<br> decimal form:<br> 356 thousandths
    9·1 answer
  • Leah spent 1 hour 32 minutes less than Carl reading last week. Carl spent 51 minutes less than Pete. Pete spent 3 hours reading.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!