1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
3 years ago
14

If MN=NQ and MQ=QR=RP, calculate for x​

Mathematics
1 answer:
Akimi4 [234]3 years ago
7 0

Answer:

  • C. 18°

Step-by-step explanation:

  • <em>Refer to attached diagram</em>
<h3>Given </h3>
  • MN = NQ
  • MQ = QR = RP
  • NMR = 3x
  • QMR = x
<h3>To find</h3>
  • Value of x
<h3>Solution</h3>
  • MN = NQ  ⇒ ∠MRN = ∠QMN = 3x+x = 4x
  • MQ = QR ⇒ ∠MRQ = ∠QMR = x

<u>RQP is exterior angle of ΔMQR ⇒ </u>

  • ∠RQP = x + x = 2x

<u>QR = RP ⇒ </u>

  • ∠RPQ = ∠RQP = 2x

<u>∠QRN is exterior angle of ΔQRP ⇒ </u>

  • ∠QRN = 2x + 2x = 4x
  • ∠MRN = ∠QRN - ∠QRM = 4x - x = 3x

<u>∠MRN = ∠NMR = 3x ⇒ </u>

  • NR = MQ

<u>NR = MQ ⇒ </u>

  • ∠NQR = ∠QRN = 4x

<u>We now have a straight angle MQP:</u>

  • ∠MQP = ∠MQN + ∠RQN + ∠RQP
  • 180° = 4x + 4x + 2x
  • 10x = 180°
  • x = 18°

Correct choice is C

You might be interested in
A bank offers all savings accounts 5% interest compounded annually. If one account has a principal of $100 and another
arsen [322]

Answer:

From the calculation for both the accounts, it is clear that both the account double in the same time period of 14 years 26 days .

Step-by-step explanation:

Given as :

The principal for the first account = p = $100

The rate of interest = r = 5% compounded annually

The account gets double , so, Amount = A = $200

Let the time after which account gets double = t years

So<u>, From Compound Interest method</u>

Amount = Principal × (1+\dfrac{\trxtrm rate}{100})^{\textrm time}

As amount is double its principal

So, A = 2 × $100 = $200

Or, A = p × (1+\dfrac{\trxtrm r}{100})^{\textrm t}

Or, $200 = $100 × (1+\dfrac{\trxtrm 5}{100})^{\textrm t}

Or, \dfrac{200}{100} = (1.05)^{\textrm t}

Or, 2 = (1.05)^{\textrm t}

Taking Log both side

Log_{10}2 = Log_{10}(1.05)^{t}

Or, 0.3010 = t Log_{10}1.05

Or, 0.3010 = t × 0.0211

∴ t = \dfrac{0.3010}{0.0211}

I.e t = 14.26

So, The time period to get account double is 14 years 26 days

<u>Again </u>

Amount = Principal × (1+\dfrac{\trxtrm rate}{100})^{\textrm time}

Or, A = p × (1+\dfrac{\trxtrm r}{100})^{\textrm t}

As amount is double its principal

So, A = 2 × $1000 = $2000

Or, $2000 = $1000 × (1+\dfrac{\trxtrm 5}{100})^{\textrm t}

Or, \dfrac{2000}{1000} = (1.05)^{\textrm t}

Or, 2 = (1.05)^{\textrm t}

Taking Log both side

Log_{10}2 = Log_{10}(1.05)^{t}

Or, 0.3010 = t Log_{10}1.05

Or, 0.3010 = t × 0.0211

∴ t = \dfrac{0.3010}{0.0211}

I.e t = 14.26

So, The time period to get account double is 14 years 26 days

Hence From the calculation for both the accounts, it is clear that both the account double in the same time period of 14 years 26 days . Answer

7 0
3 years ago
Answer right and I’ll give you brainliest
Komok [63]
You divide x by y to get the rate of change
6 0
3 years ago
For the figures below, assume they are made of semicircles, quarter circles, and squares. For each shape, find the area and peri
krek1111 [17]

Answer:

Area:

36\pi - 72 \: cm {}^{2}

Step-by-step explanation:

( \frac{1}{4}  \times \pi \times 12 {}^{2}  )  - ( \frac{1}{2}  \times 12 \times 12) = 36\pi - 72

Area of the blue area:

36\pi - 72 \: cm {}^{2}

Perimeter of blue area:unsure as no numbers are given for the slanted side if the triangle.

6 0
4 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
koperasi sekolah membeli 5 lusin buku tulis dengan harga 30.000 tiap lusin. dari hasil penjualan itu koperasi memperoleh untung
Studentka2010 [4]

I think the answer is A

6 0
4 years ago
Other questions:
  • 20. f(x) = -9x - 2 for x = 7
    13·1 answer
  • What is the value of the expression 2 (exp) 2 + 4 (exp) 2 ÷ 2 (exp) 2?
    7·1 answer
  • The object distance for a concave lens is 2.0 cm, and the image distance is 8.0 cm. The height of the object is 1.0 cm. What is
    10·1 answer
  • Find the radian measure of the central angle of a circle of radius r​ = 60 inches that intercepts an arc of length s​ = 70 inche
    6·1 answer
  • Sean got m marks for his math test.Emma got 15 more marks than Sean Emma score is 97
    13·1 answer
  • Find the values of x and y for which the quadrilateral below must be a parallelogram.
    7·2 answers
  • The store bought a pair of shoes for $25, and sold it for $45. What percentage was the markup?
    11·1 answer
  • Can y’all plz help me plz
    13·2 answers
  • What is the value of x?<br> x = [? ]°<br> Enter
    14·1 answer
  • -2 - -4 * -9 = <br> HELP I WILL GIVE BRAINLIEST!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!