1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
2 years ago
13

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as t

he population mean and assume the population standard deviation of preparation fees is $100.A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?
Mathematics
1 answer:
skad [1K]2 years ago
6 0

Answer:

a) 0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

b) 0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

c) 0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

d) None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as the population mean and assume the population standard deviation of preparation fees is $100.

This means that \mu = 273, \sigma = 100

A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 30, s = \frac{100}{\sqrt{30}}

The probability is the p-value of Z when X = 273 + 16 = 289 subtracted by the p-value of Z when X = 273 - 16 = 257. So

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{30}}}

Z = 0.88

Z = 0.88 has a p-value of 0.8106

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{30}}}

Z = -0.88

Z = -0.88 has a p-value of 0.1894

0.8106 - 0.1894 = 0.6212

0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 50, s = \frac{100}{\sqrt{50}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{50}}}

Z = 1.13

Z = 1.13 has a p-value of 0.8708

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{50}}}

Z = -1.13

Z = -1.13 has a p-value of 0.1292

0.8708 - 0.1292 = 0.7416

0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 100, s = \frac{100}{\sqrt{100}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{100}}}

Z = 1.6

Z = 1.6 has a p-value of 0.9452

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{100}}}

Z = -1.6

Z = -1.6 has a p-value of 0.0648

0.9452 - 0.0648 =

0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?

None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

You might be interested in
I NEED HELP PLEASE, THANKS!
Finger [1]

Answer:

the 3rd option is the answer

Step-by-step explanation:

I hope the attached file is self-explanatory

3 0
3 years ago
Solve for X. Show all work
natta225 [31]

Answer:

About 11.77 centimeters

Step-by-step explanation:

By law of sines:

\dfrac{50}{\sin 62}=\dfrac{x}{\sin 12} \\\\\\x=\dfrac{50}{\sin 62}\cdot \sin 12\approx 11.77cm

Hope this helps!

8 0
3 years ago
How to find base area
Olegator [25]
The base area is (pi)(r squared).
3 0
3 years ago
Read 2 more answers
Give the equation of the graph pictured below
Monica [59]
I believe the equation should be y = -0.5sin(x-2<span>π)-2</span>
8 0
3 years ago
Read 2 more answers
2d + 3 when d =8 ​<br> im stuck on this question on a paper due monday!
xeze [42]

Answer:

19

Step-by-step explanation:

2d + 3

d = 8

2(8) + 3

multiply 2 and 8

16 + 3

add 16 and 3

= 19

4 0
2 years ago
Other questions:
  • What is the least common multiple of 9, 17, and 51
    10·2 answers
  • Expression equivalent to 3(2t + 6 )-4t
    11·1 answer
  • Find the exact length of the third side.
    15·2 answers
  • -4.5 + 4.4 + ____ = 0
    13·1 answer
  • 1. The midpoint of Line Segment AB is (2, -9). The coordinates of one endpoint are A (4, 10). Find the coordinates of endpoint B
    15·2 answers
  • A boat is pulled into a dock by means of a rope attached to a pulley on the dock. The rope is attached to the front of the boat,
    9·1 answer
  • Solve with work <br><br>24.32 ÷ 6.4​
    5·1 answer
  • Seven is not an example of____.
    11·2 answers
  • Before soccer practice, Laura warms up by jogging around the soccer field that is 80 yards by 120 yards . How many yards does sh
    5·2 answers
  • Simplify (-8q3,4s2)2 = ?<br> A. -649-1654<br> B. 6496854<br> C. -6496854<br> D. 6499-1684
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!