1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
3 years ago
13

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as t

he population mean and assume the population standard deviation of preparation fees is $100.A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?
Mathematics
1 answer:
skad [1K]3 years ago
6 0

Answer:

a) 0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

b) 0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

c) 0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

d) None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as the population mean and assume the population standard deviation of preparation fees is $100.

This means that \mu = 273, \sigma = 100

A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 30, s = \frac{100}{\sqrt{30}}

The probability is the p-value of Z when X = 273 + 16 = 289 subtracted by the p-value of Z when X = 273 - 16 = 257. So

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{30}}}

Z = 0.88

Z = 0.88 has a p-value of 0.8106

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{30}}}

Z = -0.88

Z = -0.88 has a p-value of 0.1894

0.8106 - 0.1894 = 0.6212

0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 50, s = \frac{100}{\sqrt{50}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{50}}}

Z = 1.13

Z = 1.13 has a p-value of 0.8708

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{50}}}

Z = -1.13

Z = -1.13 has a p-value of 0.1292

0.8708 - 0.1292 = 0.7416

0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 100, s = \frac{100}{\sqrt{100}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{100}}}

Z = 1.6

Z = 1.6 has a p-value of 0.9452

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{100}}}

Z = -1.6

Z = -1.6 has a p-value of 0.0648

0.9452 - 0.0648 =

0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?

None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

You might be interested in
An example problem in a Statistics textbook asked to find the probability of dying when making a skydiving jump.
MArishka [77]

Answer:

(a) 0.999664

(b) 15052

Step-by-step explanation:

From the given data of recent years,  there were about 3,000,000 skydiving jumps and 21 of them resulted in deaths.

So, the probability of death is \frac{21}{3000000}==0.000007.

Assuming, this probability holds true for each skydiving and does not change in the present time.

So, as every skydiving is an independent event having a fixed probability of dying and there are only two possibilities, the diver will either die or survive, so, all skydiving can be regarded as is Bernoulli's trial.

Denoting the probability of dying in a single jump by q.

q=7\times 10^{-6}=0.000007.

So, the probability of survive, p=1-q

\Rightarrow p=1-7\times 10^{-6}=0.999993.

(a) The total number of jump he made, n=48

Using Bernoulli's equation, the probability of surviving in exactly 48 jumps (r=48) out of 48 jumps (n=48) is

=\binom(n,r)p^rq^{n-r}

=\binom(48,48)(0.999993)^{48}(0.000007)^{48-48}

=(0.999993)^{48}=0.999664 (approx)

So, the probability of survive in 48 skydiving is 0.999664,

(b) The given probability of surviving =90%=0.9

Let, total n skydiving jumps required to meet the surviving probability of 0.9.

So, By using Bernoulli's equation,

0.9=\binom {n }{r} p^rq^{n-r}

Here, r=n.

\Rightarrow 0.9=\binom{n}{n}p^nq^{n-n}

\Rightarrow 0.9=p^n

\Rightarrow 0.9=(0.999993)^n

\Rightarrow \ln(0.9)=n\ln(0.999993) [ taking \log_e both sides]

\Rightarrow n=\frac {\ln(0.9)}{\ln(0.999993)}

\Rightarrow n=15051.45

The number of diving cant be a fractional value, so bound it to the upper integral value.

Hence, the total number of skydiving required to meet the 90% probability of surviving is 15052.

3 0
4 years ago
Please help me with this I need the answer soon!
koban [17]

Answer:1

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
25 points pls help me quickly
lianna [129]

7x+10y=36

y=2x+9

7x+10y=36

-2x+y=9 /*10

7x+10y=36

20x-10y=-90

+---------------------

27x=-54 //27

x=-2

-2(-2)+y=9

y=5

x=-2

y=5

7 0
4 years ago
Read 2 more answers
I NEED HELP FAST!!!!!!!!!!!!
aev [14]

Answer:

y=-3/4x-3

Step-by-step explanation:

y=mx+b

find the y intercept=b

y=mx-3

find the slope

y=-3/4x-3

8 0
3 years ago
Graph the equation below by plotting the y-intercept and a second point on the line.
Lady_Fox [76]

The y-intercept is the Y coordinate when X = 0

replace x with 0 and solve for Y:

y = 3/2(0)-5 = -5

The first point using the Y-intercept would be (0,-5)

Now to find another point replace X with another number other than 0 and solve for Y.

Lets use 2:

y = 3/2(2) - 5

y = 3-5 = -2

The second point would be (2,-2)

Now plot those two points and connect with a line.

See attached picture of how it should look:

4 0
3 years ago
Other questions:
  • On a winter’s day, 9 degrees Fahrenheit is the highest temperature recorded. Write an inequality that represents the temperature
    6·2 answers
  • A builder needs to add diagonal braces to a wall. The wall is 16 feet wide by 12 feet high. What is the length of each brace?
    8·2 answers
  • I’m so lost on this please need help thank you
    7·1 answer
  • If b is the midpoint of ac, ab=12x+11 and bc= 14x - 1, find AB
    11·1 answer
  • Helppppppppppppppppp
    10·1 answer
  • Factor the expression using GFC/ Greatest common factor. <br><br> 45+5
    9·1 answer
  • a package of marbles contains 20 blue marbles, 38 red marbles, 48 green marbles, and 16 yellow marbles. which color of marbles c
    13·1 answer
  • Five yellow M&amp;Ms for every three green how many green M&amp;Ms if there are 95 yellow
    11·1 answer
  • (x2–5x+6)(x-1) dx<br>Sol<br>x-2​
    11·1 answer
  • Stella is ordering a taxi from an online taxi service. The taxi charges $3 just for the pickup and then an additional $1.75 per
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!