1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitriy789 [7]
2 years ago
13

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as t

he population mean and assume the population standard deviation of preparation fees is $100.A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?
Mathematics
1 answer:
skad [1K]2 years ago
6 0

Answer:

a) 0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

b) 0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

c) 0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

d) None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The CPA Practice Advisor reports that the mean preparation fee for 2017 federal income tax returns was $273. Use this price as the population mean and assume the population standard deviation of preparation fees is $100.

This means that \mu = 273, \sigma = 100

A) What is the probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 30, s = \frac{100}{\sqrt{30}}

The probability is the p-value of Z when X = 273 + 16 = 289 subtracted by the p-value of Z when X = 273 - 16 = 257. So

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{30}}}

Z = 0.88

Z = 0.88 has a p-value of 0.8106

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{30}}}

Z = -0.88

Z = -0.88 has a p-value of 0.1894

0.8106 - 0.1894 = 0.6212

0.6212 = 62.12% probability that the mean price for a sample of 30 federal income tax returns is within $16 of the population mean.

B) What is the probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 50, s = \frac{100}{\sqrt{50}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{50}}}

Z = 1.13

Z = 1.13 has a p-value of 0.8708

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{50}}}

Z = -1.13

Z = -1.13 has a p-value of 0.1292

0.8708 - 0.1292 = 0.7416

0.7416 = 74.16% probability that the mean price for a sample of 50 federal income tax returns is within $16 of the population mean.

C) What is the probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean?

Sample of 30 means that n = 100, s = \frac{100}{\sqrt{100}}

X = 289

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{289 - 273}{\frac{100}{\sqrt{100}}}

Z = 1.6

Z = 1.6 has a p-value of 0.9452

X = 257

Z = \frac{X - \mu}{s}

Z = \frac{257 - 273}{\frac{100}{\sqrt{100}}}

Z = -1.6

Z = -1.6 has a p-value of 0.0648

0.9452 - 0.0648 =

0.8804 = 88.04% probability that the mean price for a sample of 100 federal income tax returns is within $16 of the population mean.

D) Which, if any of the sample sizes in part (a), (b), and (c) would you recommend to ensure at least a .95 probability that the same mean is withing $16 of the population mean?

None of them ensure, that one which comes closer is a sample size of 100 in option c), to guarantee, we need to keep increasing the sample size.

You might be interested in
Very easy! 15 points!
Irina-Kira [14]

Answer:

taxes, borrow money, regulate commerce, uniform rule of naturalization, and regulate the value.

8 0
3 years ago
Will mark brainly if u show work !
mihalych1998 [28]

Answer:

C

Step-by-step explanation:

The 6 comes from the 24(6*4=24)

The 3 comes from the 12(3*4=12)

The 4 is common

7 0
3 years ago
A rectangle has an area of 15/100 square unit. The length of the rectangle is 3/10 unit. What is the width of the rectangle?
marysya [2.9K]
Hope this helps. Let me know if you have more questions.

4 0
3 years ago
Of the following transformation types, which are examples of isometry?
Brrunno [24]
Isometry means lengths are preserved, and hence shapes must remain congruent.

Any dilation, stretching, etc are therefore excluded.

The transformations on the list that are examples of isometry are therefore:
rotation
translation
reflection
3 0
3 years ago
Read 2 more answers
Mikas diner sold 70 milkshakes last week. 9% of the milkshakes had whipped cream on top. How many milkshakes with whipped cream
VARVARA [1.3K]

Step-by-step explanation:

I hope u got ur answer ;)

if u have any more doubt ask me

8 0
3 years ago
Read 2 more answers
Other questions:
  • Write8times1 plus 5times 1/100plus 9timesplus 9times 1/1000
    9·2 answers
  • PLSS HELP !!!A data set has a standard deviation of 2.5. The element 16 is an element of a data set, with a z-score of 2.4. What
    8·1 answer
  • HeLp! I need HeLp! Plz hElP! ThAnK YoU!
    10·1 answer
  • The possible outcomes for tossing a coin four times are shown below.
    13·2 answers
  • Help pleaseeeeeeeeeeeeeeeeeee
    6·2 answers
  • Which equation represents the following word problem?
    5·2 answers
  • Thomas collected the data in table 1 to answer a statistical question. witch statistical question dose the data in table 1 answe
    6·2 answers
  • lec types 3/5 of a paragraph in 2/3 minute. If he continues at the same rate, what fraction of a paragraph can Alec complete in
    9·1 answer
  • Can someone please help me with this ASAP!!!!!
    12·1 answer
  • You and your friend are in the studio audience of a television game show. the show randomly picks 2 people in the audience. if t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!