Answer:
![f(x)=\sqrt[3]{x} +5\\\\\implies y = \sqrt{3}{x}+5](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%20%2B5%5C%5C%5C%5C%5Cimplies%20y%20%3D%20%5Csqrt%7B3%7D%7Bx%7D%2B5)
a) Since the function is given to be one - one so the inverse of the function exist. Now f(x) maps x to y so the inverse of f(x) maps y to x
To find inverse, first interchange the roles of x and y :
![\implies x = \sqrt[3]{y}+5](https://tex.z-dn.net/?f=%5Cimplies%20x%20%3D%20%5Csqrt%5B3%5D%7By%7D%2B5)
Now, solve for y :
![x = \sqrt[3]{y}+5\\\\\implies \sqrt[3]{y}=x-5\\\\\text{Now, cubing both the sides. We get,}\\\\\implies y=(x-5)^3\\\\\implies y=x^3-15\cdot x^2+75\cdot x-125\\\\\implies\bf f^{-1}(x)=x^3-15\cdot x^2+75\cdot x-125](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7By%7D%2B5%5C%5C%5C%5C%5Cimplies%20%5Csqrt%5B3%5D%7By%7D%3Dx-5%5C%5C%5C%5C%5Ctext%7BNow%2C%20cubing%20both%20the%20sides.%20We%20get%2C%7D%5C%5C%5C%5C%5Cimplies%20y%3D%28x-5%29%5E3%5C%5C%5C%5C%5Cimplies%20y%3Dx%5E3-15%5Ccdot%20x%5E2%2B75%5Ccdot%20x-125%5C%5C%5C%5C%5Cimplies%5Cbf%20f%5E%7B-1%7D%28x%29%3Dx%5E3-15%5Ccdot%20x%5E2%2B75%5Ccdot%20x-125)
b) To find coordinates of f(x) :
![f(x)=\sqrt[3]{x} +5](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%20%2B5)
First take y = 0 then take x = 0
⇒ x-coordinates : (-125,0) and y-coordinates : (0,5)
To find coordinates of inverse function of x :

First take y = 0 then take x = 0
⇒ x - coordinates : (5,0) and y - coordinates : (0,-125)
c) f(x) is defined for every real number.
⇒ Domain : -∞ < x < ∞
and Range : -∞ < f(x) < ∞
And inverse function of x is also defined for every real number :
⇒ Domain : -∞ < x < ∞

In order to find the expression that is equivalent to (t*s)(x), use the following steps:
s(x) = x - 7t(x) = 4x^2 - x + 3
(t*s)(x) = t(s(x)) = t(x - 7) = 4(x - 7)^2 - (x - 7) + 3 = 4(x - 7)^2 - x + 7 + 3
The correct result would be 4(x – 7)2 – (x – 7) + 3.
14x-(6+7x)
=14x-6-7x
=14x-7x-6
=(14x-7x)-6
=7x-6x
The next number will be 19 since you keep adding 2 each time