Hypertonic environment
<h3>
How do salts and sugars preserve food?</h3>
Salts and sugars work to preserve foods by creating a hypertonic environment. Salt and sugar will remove the water from the bacteria or fungi and they will not be able to proliferate. Loss of water results in plasmolysis, or cytoplasmic shrinkage.
<h3>What is hypertonic solution and plasmolysis?</h3>
Compared to another solution, a hypertonic solution has a higher solute concentration.
Plant cells subjected to hyperosmotic stress frequently exhibit plasmolysis as a reaction. The live protoplast violently separates from the cell wall as a result of the loss of turgor. The vacuole is primarily responsible for the plasmolytic process.
Learn more about hypertonic solution here:
brainly.com/question/13275972
#SPJ2
If the atoms that are bonding have identical electronegativities, then it's a completely nonpolar covalent bond. This doesn't happen in the real world unless the two atoms are of the same element. In a practical sense, any two elements with an electronegativity difference less than 0.3 is considered to be nonpolar covalent.
As the difference between the atoms increases, the covalent bond becomes increasingly polar. At a polarity difference of 1.7 (this changes depending on who you ask) we consider it no longer to be a covalent bond and to be the electrostatic interactions characteristic in an ionic compound.
Just so you know, you shouldn't take these values as exact. ALL interactions between adjacent atoms involve some sharing of electrons, no matter how big the difference in electronegativity. Sure, you wouldn't expect much sharing in KF, but there's a little sharing of electrons anyway. There's certainly no big cutoff that happens at a difference of 1.7 Pauling Electronegativity units.
ATP
-Photosynthesis makes the glucose that is used in cellular respiration to make ATP. The glucose is then turned back into carbon dioxide, which is used in photosynthesis. -While water is broken down to form oxygen during photosynthesis, in cellular respiration oxygen is combined with hydrogen to form water.