Answer:
x <7
Step-by-step explanation:
3x – 4 < 17
Add 4 to each side
3x – 4+4 < 17+4
3x < 21
Divide each side by 3
3x/3 < 21/3
x <7
The answer is below hope it helps.
Your answer is D. 16x² - 56xy + 49y².
A perfect square trinomial is the result of a squared binomial, like (a + b)². Using this example, the perfect square trinomial would be a² + 2ab + b², as that is what you get when you expand the brackets.
Therefore, to determine which of these is a perfect square trinomial, we have to see if it can be factorised into the form (a + b)².
I did this by first square rooting the 16x² and 49y² to get 4x and 7y as our two terms in the brackets. We automatically know the answer isn't A or B as you cannot have a negative square number.
Now that we know the brackets are (4x + 7y)², we can expand to find out what the middle term is, so:
(4x + 7y)(4x + 7y)
= 16x² + (7y × 4x) + (7y × 4x) + 49y²
= 16x² + 28xy + 28xy + 49y²
= 16x² + 56xy + 49y².
So we know that the middle number is 56xy. Now we assumed that it was (4x + 7y)², but the same 16x² and 49y² can also be formed by (4x - 7y)², and expanding this bracket turns the +56xy into -56xy, forming option D, 16x² - 56xy + 49y².
I hope this helps!
3 - 2 + x + 436 123/157 =
1 + x + 436 123/157 =
437 123/157 + x =
68732/157 + x
Answer:
no its the 3rd one
Step-by-step explanation:
thank me later