1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
14

If QRST is a kite, find mQRS

Mathematics
2 answers:
murzikaleks [220]3 years ago
8 0

Answer:

its  137. just trust me

Step-by-step explanation:

agasfer [191]3 years ago
5 0

Answer:

Step-by-step explanation:45

You might be interested in
How can I isolate x in y=6x-2x²
ozzi

Answer:

x = 3/2 ± √(9/4 − 1/2 y)

Step-by-step explanation:

y = 6x − 2x²

First, factor out the leading coefficient:

y = -2 (x² − 3x)

Complete the square.

y = -2 (x² − 3x + 9/4 − 9/4)

y = -2 (x² − 3x + 9/4) + 9/2

y = -2 (x − 3/2)² + 9/2

Solve for x.

-1/2 y = (x − 3/2)² − 9/4

9/4 − 1/2 y = (x − 3/2)²

±√(9/4 − 1/2 y) = x − 3/2

x = 3/2 ± √(9/4 − 1/2 y)

8 0
3 years ago
-12+(-19) <br><br> Please help thank you
olya-2409 [2.1K]
31 is the correct answer
6 0
4 years ago
Read 2 more answers
A bakery has d dozen eggs in one refrigerator and 3 fewer dozen eggs in another refrigerator. Which expressions correctly show h
san4es73 [151]

Answer:  2 d - 3

Step-by-step explanation:

Here, the number of dozen eggs in one refrigerator = d

According to the question,

There are 3 fewer dozen eggs in another refrigerator.

⇒ The number of eggs in another refrigerator = d - 3

Thus, the total dozen of eggs in both refrigerator = the number of dozen eggs in first refrigerator + the number of dozen eggs in second refrigerator

= d + d - 3

= 2 d - 3

Which is the required expression.

3 0
3 years ago
Read 2 more answers
A study was conducted to test whether a manufacturing process performed at a remote location can be established locally. Test de
zhenek [66]

Answer:

Step-by-step explanation:

Hello!

You have the information about voltage readings at an old and a new manufacturing location obtained remotely.

a, b and c in the attachment.

Histograms for a and c:

To construct a frequency histogram you have to first arrange the data for both locations in a frequency table. For this, I'm going to determine 5 class interval for each location. To do so you need to calculate the width of the intervals. First, you calculate the range of the variable and then you have to divide it by the number of intervals you want to do.

Old location: Range= 10,55-8,05= 2,5 → Class width: 2,5/5= 0,5

New Location: Range= 10,12-8,51= 1,61 → Class width: 1,61/5= 0,322

Starting from the minimum value you add the calculated width and create the intervals:

Old Location:

8,05-8,55

8,55-9,05

9,05-9,55

9,55-10,05

10,05-10,55

New Location

8,51-8,83

8,83-9,15

9,15-9,48

9,48-9,80

9,80-10,12

Stem and Leaf diagram for b:

To construct this diagram first I've ordered the data from leat to greatests. Then I've used the integer to form the stem 8,- 9.- and 10.- and the decimals are placed in the leafs of the diagram.

Comparing it to the histogram and stem and leaf diagram for the readings of the Old Location, the histogram stem, and leaf diagram show better where most of the readings lie.

d.

Comparing both histograms, it looks like the readings in the new location are more variable than the readings in the old location but more uniformly distributed. I would say that the readings in the new location are better than the readings in the old location.

e.

To calculate the mean you have to apply the following formula:

X[bar]= (∑xi'fi)/n

X[bar]OLD=(∑xi'fi)/n= (8.3*1+8.8*3+9.3*0+9.8*17+10.3*9)/30= 294/30= 9.8

X[bar]NEW=(∑xi'fi)/n= (8.67*6+8.99*2+9.315*7+9.64*8+9.96*7)/30= 282.045/30= 9.4015≅9.40

First you have to calculate the position of the median:

For both data sets the PosMe= 30/2=15

Now you arrange the data from least to highest and determine wich observation is in the 15th position:

Old Location

8,05 , 8,72 , 8,72 , 8,8 , 9,55 , 9,7 , 9,73 , 9,8 , 9,8 , 9,84 , 9,84 , 9,87 , 9,87 , 9,95 , 9,97 , 9,98 , 9,98 , 10 , 10,01 , 10,02 , 10,03 , 10,05 , 10,05 , 10,12 , 10,15 , 10,15 , 10,26 , 10,26 , 10,29 , 10,55

MeOLD= 9.97

New Location

8,51 , 8,65 , 8,68 , 8,78 , 8,82 , 8,82 , 8,83 , 9,14 , 9,19 , 9,27 , 9,35 , 9,36 , 9,37 , 9,39 , 9,43 , 9,48 , 9,49 , 9,54 , 9,6 , 9,63 , 9,64 , 9,7 , 9,75 , 9,85 , 10,01 , 10,03 , 10,05 , 10,09 , 10,1 , 10,12

MeNEW= 9.43

The mode is the observation with more absolute frequency.

To determine the mode on both data sets I'll use the followinf formula:

Md= Li + c [Δ₁/(Δ₁+Δ₂)]

Li= Lower bond of the interval with most absolute frequency (modal interval)

c= amplitude of the modal interval

Δ₁= absolute frequency of the modal interval minus abolute frequency of the previous interval

Δ₂= absolute frequency of the modal interval minus the absolute frequency of the next interval

Modal interval OLD

9,55-10,05

Δ₁= 17-0= 17

Δ₂= 17-9= 8

c= 0.5

Li= 9.55

MdOLD= 9.55 + 0.5*[17/(17+8)]= 9.89

Modal interval NEW

9,48-9,80

Δ₁= 8-7= 1

Δ₂= 8-7= 1

c= 0.32

Li= 9.48

MdNEW= 9.48+0.32*[1/(1+1)]= 9.64

f.

OLD

Mean 9.8

SE 0.45

X= 10.50

Z= (10.50-9.8)/0.45= 1.56

g.

NEW

Mean 9.4

SE 0.48

X=10.50

Z= (10.50-9.4)/0.48=2.29

h. The Z score for the reading 10.50 for the old location is less than the Z score for the reading 10.50 for the new location, this means that the reading is closer to the mean in the old location than in the new location.

The reading 10.50 is more unusual for the new location.

i. and k. Boxplots attached.

There are outliers for the readings in the old location, none in the readings for the new location.

j. To detect outliers using the Z- score you have to "standardize every value of the data set using the corresponding values of the mean and standard deviation. Observations that obtained a Z-score greater than 3 or less than -3 are outliers.

The data set for the new location has no outliers, To prove it I've calculated the Z-scores for the max and min values:

Min: Z=(8.51-9.4)/0.48= -1.85

Max: Z=(10.12-9.4)/0.48= 1.5

The records for the old location show, as seen in the boxplot, outliers:

To find them I'll start calculating values of Z from the bottom and the top of the list until getting a value Z≥-3 and Z≤3

Bottom:

1) 8,05 ⇒ Z=(8.05-9.8)/0.45= -3.89

2) 8,72 ⇒ Z= (8.72-9.8)/0.45= -2.4

Top

1) 10,55⇒ Z= (10.55-9.8)/0.45= 1.67

m. As mentioned before, the distribution for the new location seems to be more uniform and better distributed than the distribution for the old location. Both distributions are left-skewed, the distribution for the data of the old location is severely affected by the presence of outliers.

I hope this helps!

5 0
4 years ago
What is the length of the hypotenuse?
larisa86 [58]
C= 25

Pythagorean theorem a^2+b^2=3^2
8 0
3 years ago
Read 2 more answers
Other questions:
  • 3/11+8/21+5/22+1/63+7/24+3/8
    5·1 answer
  • What is the value of x
    13·1 answer
  • -6(5r - 6) + 4(6 + 4r)
    14·2 answers
  • To the nearest hundredth, how many cm are in 47 in? (1 in = 2.54
    14·1 answer
  • A Morning Dove can reach speeds up to 158,400 feet per hour. How fast is this in miles per hour?
    15·1 answer
  • Find the distance between each pair of points (-5,3) , (2,5)
    9·1 answer
  • which equation describes the line that passes through the point (-3,-2) and is parallel to the line 6x+5y=6
    7·1 answer
  • Parallelogram DEFG is graphed on the coordinate plane. It has coordinates D(4, 1), E(10, -3), F(p, -4), and G(-5, q).
    13·1 answer
  • If a line has a slope of 4 and goes through the point open parentheses short dash 1 comma 1 close parentheses, then the equation
    13·1 answer
  • A circular pillar candle is 2.8 inches wide and 6 inches tall. What are the lateral area and surface area of the candle? Round t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!