Answer:
5
Step-by-step explanation:
So we want to find the value of x where the area to the left of it is equal to 0.6.
Let's start by finding the area of the first triangle, between x=0 and x=4.
A = 1/2 bh
A = 1/2 (4) (0.2)
A = 0.4
So we know a > 4. What if we add the area of that rectangle?
A = 0.4 + bh
A = 0.4 + (1) (0.2)
A = 0.6
Aha! So a = 5.
The scenario represents a linear function. The rate is at a constant increase therefore it is linear.
Linear because it’s a constant rate
Since it’s doubled, and doesn’t go at a constant rate, it is a exponential function
Exponential since it increases by a multiplicative rate. It’s not constant
a. Answer: D: (∞, ∞)
R: (-∞, ∞)
<u>Step-by-step explanation:</u>
Theoretical domain is the domain of the equation (without an understanding of what the x-variable represents).
Theoretical range is the range of the equation given the domain.
c(p) = 25p
There are no restrictions on the p so the theoretical domain is All Real Numbers.
Multiplying 25 by All Real Numbers results in the range being All Real Numbers.
a) D: (∞, ∞)
R: (-∞, ∞)
*********************************************************************************
b. Answer: D: (0, 200)
R: (0, 5000)
<u>Step-by-step explanation:</u>
Practical domain is the domain of the equation WITH an understanding of what the x-variable represents.
Practical range is the range of the equation given the practical values of the domain.
The problem states that p represents the number of cups. Since we can't have a negative amount of cups, p ≥ 0. The problem also states that Bonnie will purchase a maximum of 200 cups. So, 0 ≤ p ≤ 200
The range is 25p → (25)0 ≤ (25)p ≤ (25)200
→ 0 ≤ 25p ≤ 5000
b) D: (0, 200)
R: (0, 5000)
Answer:

Step-by-step explanation:

Don't mind the 