Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
<u>Algebra II</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Integration Constant C
- Indefinite Integrals
Integration Rule [Reverse Power Rule]: 
Integration Property [Multiplied Constant]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Logarithmic Integration
U-Substitution
Step-by-step explanation:
*Note:
You could use u-solve instead of rewriting the integrand to integrate this integral.
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [Integrals] Rewrite [Integration Property - Multiplied Constant]:

- [1st Integral] Reverse Power Rule:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Logarithmic Integration:

- Back-Substitute:

- Factor:

- Rewrite:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e