1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
15

Hi, how do we do this question?​

Mathematics
1 answer:
Nutka1998 [239]3 years ago
8 0

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
If g(x) = 3(x + 10), what is the value of the<br> function when x = -8?<br> O<br> -8<br> -2<br> 24
Gala2k [10]

Answer:

6 which is none of your answers.

Are you sure your function is right?

Is value to plug in x=-8?

Step-by-step explanation:

To find the value of the function at x=-8, you replace x with -8 in the function.

g(x)=3(x+10)

g(-8)=3(-8+10)

g(-8)=3(2)

g(-8)=6

7 0
3 years ago
Read 2 more answers
Use the graph to answer the question.
Law Incorporation [45]

Answer:

Its A.

Step-by-step explanation:

Edge 2021

4 0
3 years ago
Read 2 more answers
which of the following sets could be the sides of a right triangle? {2,3, square root 13} {5,5,2 square root 10} {5,12,15}
anastassius [24]

All of these sets meet the requirements of the triangle inequality. The sum of any two numbers in the set is greater than the third one. (You really only need to check that the sum of the smallest two is greater than the largest.)

It can help to resolve the numbers that are only indicated as to value.

√13 ≈ 3.606

2√10 ≈ 6.325

_____

Your comparisons can be ...

2 + 3 = 5 > 3.606 . . . is a triangle

5 + 5 = 10 > 6.325 . . . . . . is a triangle

5 + 12 = 17 > 15 . . . . . . . . is a triangle

8 0
4 years ago
What is an equation of the line that passes through the points :<br><br> (−6,−5) and (−6,−2)?
Leno4ka [110]

Answer:  x= -6

Step-by-step explanation:

It will be a vertical line parallel to the y-axis at -6 on the x-axis. It passes through every y-value, including the given -5 and -2

5 0
4 years ago
What is 3/5 times 20
igor_vitrenko [27]
First make 20 into a fraction, then solve; 3/5 · 20/1. 60/5 = 12. Hope that helps!
3 0
3 years ago
Other questions:
  • What is the logarithmic function modeled by the following table?
    11·2 answers
  • Help me plz thanks......................
    14·2 answers
  • A 15 ft. Ladder is placed against a building so that the distance from the top of the ladder to the ground is 10 ft. Find the di
    5·1 answer
  • )
    14·2 answers
  • Which equation can be used to find the solution of (13^)d−5 =81 ?
    12·2 answers
  • Sarah said that when you multiply two fractions that are both less than 1, you may sometimes get a product equal to or greater t
    6·2 answers
  • There is one answer :v
    12·2 answers
  • I need help with number 4 I'm not sure if this is right please help
    15·1 answer
  • In how many ways can 4 people sit down in 6 seats in a row
    5·1 answer
  • Evaluate the following, if a=7, b=3, c=2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!