The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)
Answer:
<h2>14</h2>
Step-by-step explanation:

1.) There are 4 floors to the apartment complex
I don’t know about the other ones though. Sorry
<u>Solution</u><u> </u><u>:</u><u>-</u>
This triangle is a right angled triangle as we can see ∠POC, has a right angled sign. Now, we will assume the missing angle to be x, thus,
25° + 90° + x = 180° ( Angle sum property of a triangle )
115° + x = 180°
x = 180° - 115°
x = 65°
Thus, the measure of missing angle is 65°.
Hope that helps. :D
Answer:
<h2>x=(y-105)/7</h2>
Step-by-step explanation:
Given that the total time taken to practice is given by the expression as
y=7(15+x)
Simplifying the expression we have
y=105+7x
Solving for x (that is making x subject of formula we have)
7x=y-105
Divide both sides by 7 we have
x=(y-105)/7
Therefore the expression is
x=(y-105)/7