Answer:
c
Step-by-step explanation:
Here's how this works:
Get everything together into one fraction by finding the LCD and doing the math. The LCD is sin(x) cos(x). Multiplying that in to each term looks like this:
![[sin(x)cos(x)]\frac{sin(x)}{cos(x)}+[sin(x)cos(x)]\frac{cos(x)}{sin(x)} =?](https://tex.z-dn.net/?f=%5Bsin%28x%29cos%28x%29%5D%5Cfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%2B%5Bsin%28x%29cos%28x%29%5D%5Cfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%20%3D%3F)
In the first term, the cos(x)'s cancel out, and in the second term the sin(x)'s cancel out, leaving:

Put everything over the common denominator now:

Since
, we will make that substitution:

We could separate that fraction into 2:
×
and 
Therefore, the simplification is
sec(x)csc(x)
Converges by p series test
top section is almost constant, can never be larger than 3
so, compare degrees of their exponents, in this case it’s at a maximum of 3/1000n^2. the same as saying (3/1000)*summation of p series.
converges absolutely.
Answer:
pretty sure its 9 : 4
Step-by-step explanation:
Answer:
Interior Angle Theorem
x=5
measure of angles: 46, 46, 134
Step-by-step explanation:
Interior angle theorem
12x-14=5x+21
7x=35
x=5
12x-14=12(5)-14=46
5x+21=5(5)+21=46
20x+34=20(5)+34=134
Answer:
1806 seats.
Step-by-step explanation:
From the question given above, the following data were obtained:
Row 1 = 24 seats
Row 2 = 27 seats
Row 3 = 30 seats
Total roll = 28
Total number of seat =?
From the above data, we can liken the roll to be in arithmetic progress.
Also, we are asked to determine the total number of seats in the theater.
Thus the sum of the sequence can be written as:
Roll 1 + Roll 2 + Roll 3 +... + Roll 28 i.e
24 + 27 + 30 +...
Thus, we can obtain obtained the total number of seats in the theater by applying the sum of arithmetic progress formula. This can be obtained as follow:
First term (a) = 24
Common difference (d) = 2nd term – 1st term
Common difference (d) = 27 – 24 = 3
Number of term (n) = 28
Sum of the 28th term (S₂₈) =?
Sₙ = n/2 [2a + (n –1)d]
S₂₈ = 28/2 [2×24 + (28 –1)3]
S₂₈ = 14 [48 + 27×3]
S₂₈ = 14 [48 + 81]
S₂₈ = 14 [129]
S₂₈ = 1806
Thus, the number of seats in the theater is 1806.