Answer:
c. there is a positive correlation in-between x and y
Step-by-step explanation:
A regression line is a line that suggests that all the points in a scatter diagram lie on or near one particular line. In a simple regression analysis in which y is the dependent variable and x is the independent variable. If the slope is positive, the bivariate data is also said to have a positive correlation. The positive correlation in-between two variables x and y implies that in general, an increase in x goes hand in hand with an increase in y.
Answer:
a solution is 1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Step-by-step explanation:
for the equation
(1 + x⁴) dy + x*(1 + 4y²) dx = 0
(1 + x⁴) dy = - x*(1 + 4y²) dx
[1/(1 + 4y²)] dy = [-x/(1 + x⁴)] dx
∫[1/(1 + 4y²)] dy = ∫[-x/(1 + x⁴)] dx
now to solve each integral
I₁= ∫[1/(1 + 4y²)] dy = 1/2 *tan⁻¹ (2*y) + C₁
I₂= ∫[-x/(1 + x⁴)] dx
for u= x² → du=x*dx
I₂= ∫[-x/(1 + x⁴)] dx = -∫[1/(1 + u² )] du = - tan⁻¹ (u) +C₂ = - tan⁻¹ (x²) +C₂
then
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) +C
for y(x=1) = 0
1/2 *tan⁻¹ (2*0) = - tan⁻¹ (1²) +C
since tan⁻¹ (1²) for π/4+ π*N and tan⁻¹ (0) for π*N , we will choose for simplicity N=0 . hen an explicit solution would be
1/2 * 0 = - π/4 + C
C= π/4
therefore
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
The correct answer is the second option: plus or minus square root of 20
Hope this helped :)
A radioactive atmosphere around the area and an expensive, hard time cleaning everything up.
All you have to do is solve for x. See the following steps below.
Step 1. Subtract

from both sides

Step 2. Simplify

to
