1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
12

There were 60 people on a bus. After 3 stops, the number of people decreased to 48. What was the percent of decrease in the numb

er of people on the bus?
A. 12%
B. 20%
C. 24%
D. 25%
Mathematics
2 answers:
JulsSmile [24]3 years ago
8 0
12% was decrease in the number of people in the bus
faltersainse [42]3 years ago
3 0

Answer:

I believe its 12%

Step-by-step explanation:

60-48=12 so 12%

You might be interested in
Use the bar graph to find the experimental probability of the event. Write your answer as a fraction or percent rounded to the n
LekaFEV [45]

Answer:

i think its 90% but im not 100% sure

Step-by-step explanation:

8 0
3 years ago
Please help ASAP thank you
aliya0001 [1]

Answer:

A) a = 25

B) b = 14

Step-by-step explanation:

hopefully this helps :)

8 0
2 years ago
Read 2 more answers
Use the quadratic formula to solve x^2 -3x - 5 = 0. Round to two decimal places.
Evgen [1.6K]

Answer:

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=\frac{3+\sqrt{29}}{2},\:x=\frac{3-\sqrt{29}}{2}

Step-by-step explanation:

Given the equation

x^2\:-3x\:-\:5\:=\:0

solving with the quadratic formula

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=-3,\:c=-5

x_{1,\:2}=\frac{-\left(-3\right)\pm \sqrt{\left(-3\right)^2-4\cdot \:1\cdot \left(-5\right)}}{2\cdot \:1}

x_{1,\:2}=\frac{-\left(-3\right)\pm \sqrt{29}}{2\cdot \:1}

separating the solutions

x_1=\frac{-\left(-3\right)+\sqrt{29}}{2\cdot \:1},\:x_2=\frac{-\left(-3\right)-\sqrt{29}}{2\cdot \:1}

solving

x=\frac{-\left(-3\right)+\sqrt{29}}{2\cdot \:\:1}

  =\frac{3+\sqrt{29}}{2\cdot \:1}

  =\frac{3+\sqrt{29}}{2}

also solving

\:x=\frac{-\left(-3\right)-\sqrt{29}}{2\cdot \:\:1}

  =\frac{3-\sqrt{29}}{2\cdot \:1}

  =\frac{3-\sqrt{29}}{2}

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=\frac{3+\sqrt{29}}{2},\:x=\frac{3-\sqrt{29}}{2}

7 0
3 years ago
Which object has a mass of approximately 450 grams?
Lostsunrise [7]
Football is your answer
8 0
3 years ago
Read 2 more answers
A(t)=.892t^3-13.5t^2+22.3t+579 how to solve this
Minchanka [31]

Answer:

t = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) + 1125/223 or t = 1125/223 - (5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 (-3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or t = 1125/223 - (5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

Step-by-step explanation:

Solve for t over the real numbers:

0.892 t^3 - 13.5 t^2 + 22.3 t + 579 = 0

0.892 t^3 - 13.5 t^2 + 22.3 t + 579 = (223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579:

(223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579 = 0

Bring (223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579 together using the common denominator 250:

1/250 (223 t^3 - 3375 t^2 + 5575 t + 144750) = 0

Multiply both sides by 250:

223 t^3 - 3375 t^2 + 5575 t + 144750 = 0

Eliminate the quadratic term by substituting x = t - 1125/223:

144750 + 5575 (x + 1125/223) - 3375 (x + 1125/223)^2 + 223 (x + 1125/223)^3 = 0

Expand out terms of the left hand side:

223 x^3 - (2553650 x)/223 + 5749244625/49729 = 0

Divide both sides by 223:

x^3 - (2553650 x)/49729 + 5749244625/11089567 = 0

Change coordinates by substituting x = y + λ/y, where λ is a constant value that will be determined later:

5749244625/11089567 - (2553650 (y + λ/y))/49729 + (y + λ/y)^3 = 0

Multiply both sides by y^3 and collect in terms of y:

y^6 + y^4 (3 λ - 2553650/49729) + (5749244625 y^3)/11089567 + y^2 (3 λ^2 - (2553650 λ)/49729) + λ^3 = 0

Substitute λ = 2553650/149187 and then z = y^3, yielding a quadratic equation in the variable z:

z^2 + (5749244625 z)/11089567 + 16652679340752125000/3320419398682203 = 0

Find the positive solution to the quadratic equation:

z = (125 (223 sqrt(3188516012553) - 413945613))/199612206

Substitute back for z = y^3:

y^3 = (125 (223 sqrt(3188516012553) - 413945613))/199612206

Taking cube roots gives (5 (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3)) times the third roots of unity:

y = (5 (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3)) or y = -(5 (-1/2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 3^(2/3)) or y = (5 (-1)^(2/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3))

Substitute each value of y into x = y + 2553650/(149187 y):

x = (5 ((223 sqrt(3188516012553) - 413945613)/2)^(1/3))/(223 3^(2/3)) - 510730/223 (-1)^(2/3) (2/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3) or x = 510730/223 ((-2)/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3) - (5 ((-1)/2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 3^(2/3)) or x = (5 (-1)^(2/3) ((223 sqrt(3188516012553) - 413945613)/2)^(1/3))/(223 3^(2/3)) - 510730/223 (2/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3)

Bring each solution to a common denominator and simplify:

x = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or x = -(5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 ((-3)/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or x = -(5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

Substitute back for t = x + 1125/223:

Answer: t = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) + 1125/223 or t = 1125/223 - (5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 (-3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or t = 1125/223 - (5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

6 0
4 years ago
Other questions:
  • What is the value of the expression 30n when n=2
    11·2 answers
  • Rectangle FGHJ is transformed according to the rule T(–3, –2)ry = x. What is the y-coordinate of J”?
    9·2 answers
  • PLZ HELP WITH ALL!! Thanks.
    13·1 answer
  • What fraction is equivalent to 123.5℅
    14·1 answer
  • Jessica is planting a garden. It has the shape of a right triangle. She wants 2 plants for each square yard of area. How many pl
    9·1 answer
  • Solve for x <br><br> 6 = x - 15
    7·2 answers
  • I WILL GIVE BRAINLYEST TO WHOEVER IS CORRECT AND FIRST
    7·1 answer
  • Jenna earns $3998.40 per month. How much is
    8·2 answers
  • Which expression is equivalent to<br> (V-1)<br> a. 31<br> b. 29<br> c. 124<br> d. ¡18
    15·1 answer
  • The coordinate −6 has a weight of 3, and the<br> coordinate 2 has a weight of 1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!