1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
3 years ago
12

Solve for y y=2x-15 y=5x-3

Mathematics
1 answer:
ozzi3 years ago
3 0

Answer:

The x will be -4 , y will be -23

You might be interested in
valiantina purchased 200 beads dor 48$ if she needs 25 more beads how much will she pay if she is charged the same rate?
Umnica [9.8K]
First find out how much each bead costs. In this case, it is .24 (48/200=.24) Now you simply multiply .24 by 25, equaling 6. She will have to pay 6 more dollars.
7 0
3 years ago
Read 2 more answers
Consider the integral Integral from 0 to 1 e Superscript 6 x Baseline dx with nequals 25 . a. Find the trapezoid rule approximat
photoshop1234 [79]

Answer:

a.

With n = 25, \int_{0}^{1}e^{6 x}\ dx \approx 67.3930999748549

With n = 50, \int_{0}^{1}e^{6 x}\ dx \approx 67.1519320308594

b. \int_{0}^{1}e^{6 x}\ dx \approx 67.0715427161943

c.

The absolute error in the trapezoid rule is 0.08047

The absolute error in the Simpson's rule is 0.00008

Step-by-step explanation:

a. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 25 with the trapezoid rule you must:

The trapezoidal rule states that

\int_{a}^{b}f(x)dx\approx\frac{\Delta{x}}{2}\left(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 25.

Therefore,

\Delta{x}=\frac{1-0}{25}=\frac{1}{25}

We need to divide the interval [0,1] into n = 25 sub-intervals of length \Delta{x}=\frac{1}{25}, with the following endpoints:

a=0, \frac{1}{25}, \frac{2}{25},...,\frac{23}{25}, \frac{24}{25}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

2f\left(x_{2}\right)=2f\left(\frac{2}{25}\right)=2 e^{\frac{12}{25}}=3.23214880438579

...

2f\left(x_{24}\right)=2f\left(\frac{24}{25}\right)=2 e^{\frac{144}{25}}=634.696657835701

f\left(x_{25}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{50}(1+2.54249830064281+3.23214880438579+...+634.696657835701+403.428793492735)\approx 67.3930999748549

  • To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 50 with the trapezoid rule you must:

We have that a = 0, b = 1, n = 50.

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{50}\right)=2 e^{\frac{3}{25}}=2.25499370315875

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

2f\left(x_{49}\right)=2f\left(\frac{49}{50}\right)=2 e^{\frac{147}{25}}=715.618483417705

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{100}(1+2.25499370315875+2.54249830064281+...+715.618483417705+403.428793492735) \approx 67.1519320308594

b. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using 2n with the Simpson's rule you must:

The Simpson's rule states that

\int_{a}^{b}f(x)dx\approx \\\frac{\Delta{x}}{3}\left(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+2f(x_{n-2})+4f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 50

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

4f\left(x_{1}\right)=4f\left(\frac{1}{50}\right)=4 e^{\frac{3}{25}}=4.5099874063175

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

4f\left(x_{49}\right)=4f\left(\frac{49}{50}\right)=4 e^{\frac{147}{25}}=1431.23696683541

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the Simpson's rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{150}(1+4.5099874063175+2.54249830064281+...+1431.23696683541+403.428793492735) \approx 67.0715427161943

c. If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A-B|

The absolute error in the trapezoid rule is

The calculated value is

\int _0^1e^{6\:x}\:dx=\frac{e^6-1}{6} \approx 67.0714655821225

and our estimate is 67.1519320308594

Thus, the absolute error is given by

|67.0714655821225-67.1519320308594|=0.08047

The absolute error in the Simpson's rule is

|67.0714655821225-67.0715427161943|=0.00008

6 0
3 years ago
I REALLY NEED HELP PLEASE HELP ME :(
o-na [289]

Answer:

I may be wrong but I think 8 is your answer.

Step-by-step explanation:

(-1)^(3/7)  x 128^(3/7)

-1 x 128^3/7

128^(3/7) = 8

= 8

6 0
3 years ago
Solve the equation -3(x-14)+9x=6x+42. Does the equation have one solution, no solution, or infinitely many solutions?
Serggg [28]

Answer:

-3x+42+9x=6x+42

0x=0

x=0

Step-by-step explanation:

there is no solution

7 0
3 years ago
Read 2 more answers
In the past, 21% of all homes with a stay-at-home parent, the father is the stay-at-home parent. An independent research firm ha
Afina-wow [57]

Answer:

A sample size of 79 is needed.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of \pi, and a confidence level of 1-\alpha, we have the following confidence interval of proportions.

\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}

In which

z is the zscore that has a pvalue of 1 - \frac{\alpha}{2}.

For this problem, we have that:

\pi = 0.21

The margin of error is:

M = z\sqrt{\frac{\pi(1-\pi)}{n}}

95% confidence level

So \alpha = 0.05, z is the value of Z that has a pvalue of 1 - \frac{0.05}{2} = 0.975, so Z = 1.96.  

What sample size is needed if the research firm's goal is to estimate the current proportion of homes with a stay-at-home parent in which the father is the stay-at-home parent with a margin of error of 0.09?

A sample size of n is needed.

n is found when M = 0.09. So

M = z\sqrt{\frac{\pi(1-\pi)}{n}}

0.09 = 1.96\sqrt{\frac{0.21*0.79}{n}}

0.09\sqrt{n} = 1.96\sqrt{0.21*0.79}

\sqrt{n} = \frac{1.96\sqrt{0.21*0.79}}{0.09}

(\sqrt{n})^{2} = (\frac{1.96\sqrt{0.21*0.79}}{0.09})^{2}

n = 78.68

Rounding up to the nearest whole number.

A sample size of 79 is needed.

4 0
3 years ago
Other questions:
  • An object is moving at a speed of 2 centimeters every 7 seconds. Express this speed in meters per week. Round your answer to the
    10·2 answers
  • What is correct?
    9·1 answer
  • How many hours of jogging at 5.5 miles per hour would be needed to lose 5 pounds
    13·1 answer
  • Please help ASAP!!!!!!!
    11·1 answer
  • 17=(-14)+K solve for K
    14·2 answers
  • Describe how the graph of g(x) is related to the graph of f(x) = 1?/x
    15·1 answer
  • Jessica plans to plant a garden 55 feet away from her house. On a map of her backyard, she drew the garden 22 inches away from t
    6·1 answer
  • Name the quadrilateral ?
    13·2 answers
  • Please help me thank you
    13·1 answer
  • There are 96 football players at all levels at Davenport High School. If two-thirds of the players make the honor roll for their
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!