Answer:
a

b

c

d

Step-by-step explanation:
Generally degree of freedom is mathematically represented as
![df = \frac{ [\frac{ s^2_i }{m} + \frac{ s^2_j }{n} ]^2 }{ \frac{ [ \frac{s^2_i}{m} ]^2 }{m-1 } +\frac{ [ \frac{s^2_j}{n} ]^2 }{n-1 } }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%5Cfrac%7B%20s%5E2_i%20%7D%7Bm%7D%20%2B%20%5Cfrac%7B%20s%5E2_j%20%7D%7Bn%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B%20%5B%20%5Cfrac%7Bs%5E2_i%7D%7Bm%7D%20%5D%5E2%20%7D%7Bm-1%20%7D%20%20%2B%5Cfrac%7B%20%5B%20%5Cfrac%7Bs%5E2_j%7D%7Bn%7D%20%5D%5E2%20%7D%7Bn-1%20%7D%20%20%7D)
Considering a
a) m = 12, n = 15, s1 = 4.0, s2 = 6.0
![df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{15} ]^2 }{ \frac{ [ \frac{4^2}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{15} ]^2 }{15-1 } }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%5Cfrac%7B%204%5E2%20%7D%7B12%7D%20%2B%20%5Cfrac%7B%206%5E2%20%7D%7B15%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B%20%5B%20%5Cfrac%7B4%5E2%7D%7B12%7D%20%5D%5E2%20%7D%7B12-1%20%7D%20%20%2B%5Cfrac%7B%20%5B%20%5Cfrac%7B6%5E2%7D%7B15%7D%20%5D%5E2%20%7D%7B15-1%20%7D%20%20%7D)

Considering b
(b) m = 12, n = 21, s1 = 4.0, s2 = 6.0
![df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{4^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%5Cfrac%7B%204%5E2%20%7D%7B12%7D%20%2B%20%5Cfrac%7B%206%5E2%20%7D%7B21%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B%20%5B%20%5Cfrac%7B4%5E4%7D%7B12%7D%20%5D%5E2%20%7D%7B12-1%20%7D%20%20%2B%5Cfrac%7B%20%5B%20%5Cfrac%7B6%5E2%7D%7B21%7D%20%5D%5E2%20%7D%7B21-1%20%7D%20%20%7D)

Considering c
(c) m = 12, n = 21, s1 = 3.0, s2 = 6.0
![df = \frac{ [\frac{ 3^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{3^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%5Cfrac%7B%203%5E2%20%7D%7B12%7D%20%2B%20%5Cfrac%7B%206%5E2%20%7D%7B21%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B%20%5B%20%5Cfrac%7B3%5E4%7D%7B12%7D%20%5D%5E2%20%7D%7B12-1%20%7D%20%20%2B%5Cfrac%7B%20%5B%20%5Cfrac%7B6%5E2%7D%7B21%7D%20%5D%5E2%20%7D%7B21-1%20%7D%20%20%7D)

Considering c
(d) m = 10, n = 24, s1 = 4.0, s2 = 6.0
![df = \frac{ [\frac{ 4^2 }{10} + \frac{ 6^2 }{24} ]^2 }{ \frac{ [ \frac{4^2}{10} ]^2 }{10-1 } +\frac{ [ \frac{6^2}{24} ]^2 }{24-1 } }](https://tex.z-dn.net/?f=df%20%3D%20%20%5Cfrac%7B%20%5B%5Cfrac%7B%204%5E2%20%7D%7B10%7D%20%2B%20%5Cfrac%7B%206%5E2%20%7D%7B24%7D%20%5D%5E2%20%7D%7B%20%5Cfrac%7B%20%5B%20%5Cfrac%7B4%5E2%7D%7B10%7D%20%5D%5E2%20%7D%7B10-1%20%7D%20%20%2B%5Cfrac%7B%20%5B%20%5Cfrac%7B6%5E2%7D%7B24%7D%20%5D%5E2%20%7D%7B24-1%20%7D%20%20%7D)

Answer:
3906250
Step-by-step explanation:
We can notice that the ratio is 5. 10/2 = 5
Each term gets multiplied by 5 to get the next term.
250 × 5 = 1250 (5th term)
1250 × 5 = 6250 (6th term)
6250 × 5 = 31250 (7th term)
31250 × 5 = 156250 (8th term)
156250 × 5 = 781250 (9th term)
781250 × 5 = 3906250 (10th term)
The 10th term of the geometric sequence is 3906250.
4.2 the 2 is in the tenths place so you round it using the 3 because it is the first one behind it and 3 is less than 5 so it just stays at 2 so your answer is 4.2
Answer:
x=1 and y= 5
Step-by-step explanation:
To solve this, lets take the first equation and find the x value.
Because it is ordered in standard form, we need to convert to slope-intercept form, and isolate the y.
5x+4y=16
-5x -5x
4y=-5x+16
÷4 ÷4 ÷4
y=
+4
or
y=-1
+4
or
y= 5
Now that we have the y value, we can use this to find the x value by inserting it into either equation, since they both have y values in them. Going with the first one again, lets try it:
5x+4(
+4)=16
5x-5+16=16
5x+11=16
-11 -11
5x=5
÷5 ÷5
x=1 and y= 5
Find the average of the list of numbers.
- 18, - 29, - 17, - 12