Answer:
y = 6x
Step-by-step explanation:
Use this formula...
(-4 + 8) / 2 , (8 + (-4)) / 2
From there you get...
4 / 2 , 4 / 2
Simplify and you get
(2 , 2)
Here's the factorization of the equation
f(x) = [ (x+4)(2x-1) ] / [ (x-1)(x^2+x+1) ]
<u>Domain</u>
The domain of a function is the set of input or argument values for which the function is real and defined.
- function domain : x < 1 or x > 1
<u>Range
</u><u />Resulting f(x) values: all Real Numbers<u>
</u>
<u>Roots
</u>x = 1/2 & -4
<u>Axis interception points</u>
x-axis: (1/2, 0) , (-4, 0)
(y-axis): (0, 4)
<u>Asymptotes</u>
Vertical: x = 1
Horizontal: y = 0
Step-by-step explanation:
3 to the power of 5
3^5
= 3x3x3x3x3
= 243
The answer is: z² .
__________________________
Given: <span>(x÷(y÷z))÷((x÷y)÷z) ; without any specified values for the variables;
_______________________
we shall simplify.
___________________
We have:
__________
</span>(x÷(y÷z)) / ((x÷y)÷z) .
_____________________________________
Start with the first term; or, "numerator": (x÷(y÷z)) ;
_____________________________________
x ÷ (y / z) = (x / 1) * (z / y) = (x * z) / (1 *y) = [(xz) / y ]
_____________________________________
Then, take the second term; or "denominator":
_____________________________________
((x ÷ y) ÷z ) = (x / y) / z = (x / y) * (1 / z) = (x *1) / (y *z) = [x / (zy)]
_________________________________________
So (x÷(y÷z)) / ((x÷y)÷z) = (x÷(y÷z)) ÷ ((x÷y)÷z) =
[(xz) / y ] ÷ [x / (zy)] = [(xz) / y ] / [x / (zy)] =
[(xz) / y ] * [(zy) / x] ;
_______________________________________
The 2 (two) z's "cancel out" to "1" ; and
The 2 (two) y's = "cancel out" to "1" ;
______________________________________________
And we are left with: z * z = z² . The answer is: z² .
______________________________________________