1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
3 years ago
12

8 orchid plants and 12 lily plants sell for $362. 12 orchid and 8 lily plants sell for $388. How much does the lily plant charge

Mathematics
1 answer:
vlabodo [156]3 years ago
8 0

Answer:

$15.5

Step-by-step explanation:

let a = price of one orchid plant

8 orchids would cost 8 x a = 8a

12 orchids would cost 12 x a = 12a

Let b = price of one lily plant

12 lilies would cost 12 x b = 12b

8 lilies would cost 8 x b = 8b

8a + 12b = 362 -- eqn 1

12a + 8b = 388 -- eqn 2

to solve, multiply equation 1 by 8 and equation 2 by 12

64a + 96b = 2896 equation 3

144a + 96b = 4656 equation 4

substract equation 4 from 3

80a = 1760

a = $22

Substitute for a in eqn 1 and solve for b

8(22) + 12b = 362

b = $15.5

You might be interested in
Factorize 2x²y⁴-6xy³​
Gekata [30.6K]

Answer:

=2xy^3x(xy-3)

Step-by-step explanation:

2x^2y4-6xy^3

=2xy^3x(xy-3)

=2xy^3x(xy-3)

5 0
2 years ago
How do I divide pi by 1000?
Leokris [45]

Just as you would do it with any other number.

Write out some of it, then move the decimal point 3 places this way <=== .

Some of pi :                   3.14159 

Divide by 1,000 :     0.00314159

8 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Simplify each of the following powers of i. i^99=
Scorpion4ik [409]
I= sqrt (-1)

If the power is
- even then the value could be -1 or 1
-odd then the value could be -i or i

99 is odd so now is
-i if (99+1)/2 is even or is
i is (99+1)/2 is odd

Now check (99+1)/2= 100/2= 50,
50 is even so
i^99 = -i
8 0
3 years ago
Read 2 more answers
Your revenue is $32,456. Your gross margin is $23,487. Your operating expenses are $8,123. Your profit is: a) $8,969 b) $24,333
serg [7]
Your answer will be C
5 0
3 years ago
Read 2 more answers
Other questions:
  • i need help with this question... the word "GC" in the question stands for graphic calculator so u could just ignore that part o
    11·1 answer
  • HELP ME PLEASE PLEASE I NEED HELP
    10·1 answer
  • Help pls! id appreciate it, trying to get these done tonight
    11·2 answers
  • Can someone help...?
    11·2 answers
  • Help me please, i need help with all the questions. My teacher did not explain very well
    7·1 answer
  • Marlena bought 1 2/3 pounds of French Roast coffee and 3 1/8 pounds of Columbian coffee and paid $31.25. Rowen bought 2 5/12 cup
    15·1 answer
  • Math <br> Pls solve soon.
    9·1 answer
  • 32 ⋅ 33 = ? help pelase
    12·2 answers
  • Jamie practices singing for 45 minutes every day. Which equation represents the relationship between the total number of minutes
    10·2 answers
  • Find the measure of angle T. Please help it’s for a test
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!