Not of Bernoulli type, but still linear.

There's no need to find an integrating factor, since the left hand side already represents a derivative:
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=(1+x^2)\dfrac{\mathrm dy}{\mathrm dx}+2xy](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D%281%2Bx%5E2%29%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%2B2xy)
So, you have
![\dfrac{\mathrm d}{\mathrm dx}[(1+x^2)y]=4x^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%281%2Bx%5E2%29y%5D%3D4x%5E2)
and integrating both sides with respect to

yields


Answer:
97.68 %
z(lower) = .0227
z(upper) = .999
Step-by-step explanation:
Answer:54
Step-by-step explanation:
9*6=54
Answer:For every right triangle, the circumcenter is always the midpoint of the hypotenuse. All four points of concurrency can themselves be concurrent! Only with an equilateral triangle will the centroid, circumcenter, incenter and orthocenter always be the same point!
Step-by-step explanation: