(a) It looks like the ODE is
<em>y'</em> = 4<em>x</em> √(1 - <em>y </em>^2)
which is separable:
d<em>y</em>/d<em>x</em> = 4<em>x</em> √(1 - <em>y</em> ^2) => d<em>y</em>/√(1 - <em>y</em> ^2) = 4<em>x</em> d<em>x</em>
Integrate both sides. On the left, substitute <em>y</em> = sin(<em>t </em>) and d<em>y</em> = cos(<em>t</em> ) d<em>t</em> :
∫ d<em>y</em>/√(1 - <em>y</em> ^2) = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / √(1 - sin^2(<em>t</em> )) d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / √(cos^2(<em>t</em> )) d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / |cos(<em>t</em> )| d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
Since we want the substitutiong to be reversible, we implicitly assume that -<em>π</em>/2 ≤ <em>t</em> ≤ <em>π</em>/2, for which cos(<em>t</em> ) > 0, and in turn |cos(<em>t</em> )| = cos(<em>t</em> ). So the left side reduces completely and we get
∫ d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
<em>t</em> = 2<em>x</em> ^2 + <em>C</em>
arcsin(<em>y</em>) = 2<em>x</em> ^2 + <em>C</em>
<em>y</em> = sin(2<em>x</em> ^2 + <em>C </em>)
(b) There is no solution for the initial value <em>y</em> (0) = 4 because sin is bounded between -1 and 1.
Answer:
I’m the Globglogabgalab, I love books
And this basement is a true treasure trove
I am the Glob-glo-gab-galab
The shwabble-dabble-wabble-gabble flibba blabba blab
I’m full of shwibbly liber-kind
I am the yeast of thoughts and minds
Shwabble dabble glibble glabble schribble shwap glab
Dibble dabble shribble shrabble glibbi-glap shwap
Shwabble dabble glibble glabble shwibble shwap-dap
Dibble dabble shribble shrabble glibbi-shwap glab
Ooh, ha ha ha, mmm, splendid
Simply delicious
Ohm, ha ha ha ha
Step-by-step explanation:
Answer:
(7,0)
Step-by-step explanation:
Answer:
pretty sure it is negative correct me if im wrong
Answer:
Median equals 45. Mean equals 48
Step-by-step explanation:
To find the mean you add up all the numbers and divide by the number of numbers there are.
For median you put them from least to greatest and check them off from each side until you get a number in the middle.