Option A. 150 m 3 is the correct one
Answer:
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis. ⇒ False
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis. ⇒ False
Step-by-step explanation:
<em>Let us explain the reflection about the axes</em>
- If a graph is reflected about the x-axis, then the y-coordinates of all points on it will opposite in sign
Ex: if a point (2, -3) is on the graph of f(x), and f(x) is reflected about the x-axis, then the point will change to (2, 3)
- That means reflection about the x-axis change the sign of y
- y = f(x) → reflection about x-axis → y = -f(x)
- If a graph is reflected about the y-axis, then the x-coordinates of all points on it will opposite in sign
Ex: if a point (-2, -5) is on the graph of f(x), and f(x) is reflected about the y-axis, then the point will change to (2, -5)
- That means reflection about the y-axis change the sign of x
- y = f(x) → reflection about y-axis → y = f(-x)
<em>Now let us answer our question</em>
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis.
It is False because reflection about x-axis change sign of y
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis.
It is False because reflection about y-axis change sign of x
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the y-axis
<span>C. Subtraction Property of Equality; Multiplication Property of Equality
For the first one, you are subtracting 7 from both sides (step b), to help isolate the y
since you are both subtracting, and "both sides" (meaning there is a equal sign) it is <em>Subtraction Property of Equality.</em>
For the second one, you are multiplying 2 from both sides (step d), to help isolate the y
since you are multiplying, and "both sides" (meaning there is a equal sign), it is <em>Multiplication Property of Equality</em>
hope this helps</span>
Answer:
Dimensions of the rectangular plot will be 500 ft by 750 ft.
Step-by-step explanation:
Let the length of the rectangular plot = x ft.
and the width of the plot = y ft.
Cost to fence the length at the cost $3.00 per feet = 3x
Cost to fence the width of the cost $2.00 per feet = 2y
Total cost to fence all sides of rectangular plot = 2(3x + 2y)
2(3x + 2y) = 6,000
3x + 2y = 3,000 ----------(1)
3x + 2y = 3000
2y = 3000 - 3x
y = ![\frac{1}{2}[3000-3x]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B3000-3x%5D)
y = 1500 - 
Now area of the rectangle A = xy square feet
A = x[
]
For maximum area 
A' =
= 0
1500 - 3x = 0
3x = 1500
x = 500 ft
From equation (1),
y = 1500 - 
y = 1500 - 750
y = 750 ft
Therefore, for the maximum area of the rectangular plot will be 500 ft × 750 ft.
two fencing 3(500+500) = $3000
other two fencing 2(750+750) = $3000
Answer:
4.0506100 x 10^-1
Step-by-step explanation:
Because all you need to do is move the decimal point to the right once, you write 10^-1 to show that to get back to the original number, you just multiply 4.0506100 by -0.1