Answer:
B) \sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33} \div 2
Step-by-step explanation:
Step 1: First we have to get rid off the roots in the denominator.
To do that, we have to multiply the numerator and the denominator by the conjugate of √5 + √3.
The conjugate of √5 + √3 is √5 - √3.
Now multiply given expression with √5 - √3
(√6 + √11) (√5 - √3)
------------- x -----------
(√5 + √3) (√5 - √3)
Step 2: Multiply the numerators and the denominators.
√6√5 - √6√3 +√11√5 -√11√3
------------------------------------------
(√5)^2 - (√3)^2
Now let's simplify to get the answer.
√30-√18 +√55 - √33
-----------------------------
5 - 3
= √30 -3√2 +√55 [√18 = √9√2 = 3√2]
--------------------------
2
The answer is \sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33} \div 2
Thank you.
Answer:
w= 9
Step-by-step explanation:

Square both sides:
-4w +61= (w -4)²

Expand:
-4w +61= w² -2(w)(4) +4²
-4w +61= w² -8w +16
Simplify:
w² -8w +16 +4w -61= 0
w² -4w -45= 0
Factorize:
(w -9)(w +5)= 0
w -9= 0 or w +5= 0
w= 9 or w= -5 (reject)
Note:
-5 is rejected since we are only taking the positive value of the square root here. If the negative square root is taken into consideration, then w= -5 would give us -9 on both sides of the equation.
<u>Why </u><u>do </u><u>we </u><u>use </u><u>negative </u><u>square </u><u>root?</u>
When solving an equation such as x²= 4,
we have to consider than squaring any number removes the negative sign i.e., the result of a squared number is always positive.
In the case of x²= 4, x can be 2 or -2. Thus, whenever we introduce a square root, a '±' must be used.
However, back to our question, we did not introduce the square root so we should not consider the negative square root value.
Answer:
If you take All of them and add them then you get 262 I dont really understand what your trying to say