By definition, a polynomial is an expression with more than one term. That is a monomial. We have names for 2-termed polynomials (binomials) and 3-termed polynomials (trinomials), but that's where the naming stops and they all are called polynomials after that. Our degree is the same as the highest exponent. So our degree is a fifth degree. The leading coefficient is the number that starts out the whole polynomial AS LONG AS IT IS IN STANDARD FORM. If our polynomial started with the -4x^4, our leading coefficient would NOT be -4 since the highest degree'd term will always come first in standard form. Your choice for your answer is the first one given. Degree: 5 Leading Coefficient: -13.
You would set it up: .5/100 = x/490 and then cross multiply .5 time 490 and 100 times x, and end up with: 245=100x. divide by 100, and get 2.45
180 minus 90 equals 90, divided by 2, the answer is 45 degrees
Answer:
B (5, 13)
Step-by-step explanation:
9x + 4y = 97
9x + 6y = 123
To solve by elimination, we want to <em>eliminate</em> a variable. To do this, we must make one variable cancel out.
First, we can see that both equations have 9x. To cancel out x, we must make <em>one</em> of the 9x's <em>negative</em>. To do this, multiply <em>each term</em> in the equation by -1.
-1(9x + 6y = 123)
-9x - 6y = -123
This is one of your equations. Set it up with your other given equation.
9x + 4y = 97
-9x - 6y = -123
Imagine this is one equation. Since every term is negative, you will be subtracting each term.
9x + 4y = 97
-9x - 6y = -123
___________
0x -2y = -26
-2y = -26
To isolate y further, divide both sides by -2.
y = 13
Now, to find x, plug y back into one of the original equations.
9x + 4(13) = 97
Multiply.
9x + 52 = 97
Subtract.
9x = 45
Divide.
x = 5
Check your answer by plugging both variables into the equation you have not used yet.
-9(5) - 6(13) = -123
-45 - 78 = -123
-123 = -123
Your answer is correct!
(5, 13)
Hope this helps!
Answer:
B. Inconsistent (No solutions exist)
Step-by-step explanation:
The linear system that consists of parallel lines are <u><em>inconsistent</em></u><em>, </em>which means that no solutions exist.