Answer:
10-5
Step-by-step explanation:
As per the attached figure, right angled
has an inscribed circle whose center is
.
We have joined the incenter
to the vertices of the
.
Sides MD and DL are equal because we are given that 
Formula for <em>area</em> of a
As per the figure attached, we are given that side <em>a = 10.</em>
Using pythagoras theorem, we can easily calculate that side ML = 10
Points P,Q and R are at
on the sides ML, MD and DL respectively so IQ, IR and IP are heights of
MIL,
MID and
DIL.
Also,


So, radius of circle = 
120º is 1/3 of a complete revolution of 360º. So the area of this sector should be 1/3 the area of the complete circle.
A circle with radius 9 has area 9^2 π = 81π.
So the sector has area 81π/3.
Put another way: The area <em>A</em> of a circular sector and its central angle <em>θ</em> (in degrees) occur in the same ratio as the area of the entire circle with radius <em>r</em> according to
<em>A</em> / <em>θ </em>º = (π <em>r </em>^2) / 360º
==> <em>A</em> = π/360 <em>θ r</em> ^2
In this case, <em>r</em> = 9 and <em>θ</em> = 120º, so
<em>A</em> = π/360 * 120 * 81 = 81π/3
Answer:
4.39% theoretical probability of this happening
Step-by-step explanation:
For each coin, there are only two possible outcomes. Either it lands on heads, or it lands on tails. The probability of a coin landing on heads is independent of other coins. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
Theoretically, a fair coin
Equally as likely to land on heads or tails, so 
10 coins:
This means that 
What is the theoretical probability of this happening?
This is P(X = 2).


4.39% theoretical probability of this happening
Answer:14
Step-by-step explanation:
beacsue i just kno i have been working on it ofro days 7+7 1+7
and plase read the pargraphh if you don't i will (; , cryyyyyyyyyyyyyyyyyyyingggggggggggggg
aragraphs are the building blocks of papers. Many students define paragraphs in terms of length: a paragraph is a group of at least five sentences, a paragraph is half a page long, etc. In reality, though, the unity and coherence of ideas among sentences is what constitutes a paragraph. A paragraph is defined as “a group of sentences or a single sentence that forms a unit” (Lunsford and Connors 116). Length and appearance do not determine whether a section in a paper is a paragraph. For instance, in some styles of writing, particularly journalistic styles, a paragraph can be just one sentence long. Ultimately, a paragraph is a sentence or group of sentences that support one main idea. In this handout, we will refer to this as the “controlling idea,” because it controls what happens in the rest of the paragraph.