Plug in the first equation into the he second equation
3x-(2x+7)=-9
3x-2x-7=-9
x-7=-9
x=-2
plug in x=-2 into the first equation
y=2(-2)+7
y=-4+7
y=3
answer: (-2,3)
Answer:
3¼
Step-by-step explanation:

We take any of the two points shown in the question. I will take (-3, 1) and (1, 14).
x¹ = -3
y¹ = 1
x² = 1
y² = 14
Now, we sub these figures into the formula.

This leaves us with 14-1/1+3, which we can make into 13/4
13/4 = 3¼
<em>Disclaimer</em><em>:</em><em> </em><em>It</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>actually</em><em> </em><em>x</em><em> </em><em>(</em><em>or</em><em> </em><em>y</em><em>)</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>power</em><em> </em><em>of</em><em> </em><em>two</em><em>,</em><em> </em><em>but</em><em> </em><em>a</em><em> </em><em>way</em><em> </em><em>to</em><em> </em><em>distinguish</em><em> </em><em>one</em><em> </em><em>x</em><em> </em><em>(</em><em>or</em><em> </em><em>y</em><em>)</em><em> </em><em>from</em><em> </em><em>the</em><em> </em><em>other</em><em>.</em><em> </em><em>It</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>label</em><em> </em><em>of</em><em> </em><em>sorts</em><em>.</em>
The width would be 10ft and the length would be 16ft
when you multiply 10 by 2 and 16 by 2 you get 20 and 32 and when those are added it gets 52
Hope that helps
If you have any questions leave a comment
Complete question:
He amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.3 minutes and standard deviation 1.4 minutes. Suppose that a random sample of n equals 47 customers is observed. Find the probability that the average time waiting in line for these customers is
a) less than 8 minutes
b) between 8 and 9 minutes
c) less than 7.5 minutes
Answer:
a) 0.0708
b) 0.9291
c) 0.0000
Step-by-step explanation:
Given:
n = 47
u = 8.3 mins
s.d = 1.4 mins
a) Less than 8 minutes:

P(X' < 8) = P(Z< - 1.47)
Using the normal distribution table:
NORMSDIST(-1.47)
= 0.0708
b) between 8 and 9 minutes:
P(8< X' <9) =![[\frac{8-8.3}{1.4/ \sqrt{47}}< \frac{X'-u}{s.d/ \sqrt{n}} < \frac{9-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20%5B%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%3C%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B9-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
= P(-1.47 <Z< 6.366)
= P( Z< 6.366) - P(Z< -1.47)
Using normal distribution table,

0.9999 - 0.0708
= 0.9291
c) Less than 7.5 minutes:
P(X'<7.5) = ![P [Z< \frac{7.5-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20P%20%5BZ%3C%20%5Cfrac%7B7.5-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D%20)
P(X' < 7.5) = P(Z< -3.92)
NORMSDIST (-3.92)
= 0.0000