Answer:
b.) The graph's x-intercepts are similar to ½(x - 5)(x + 2).
a.) [-2, 0], [5, 0]
__________________________________________________________
b.) The graph has a maximum value because the graph opens down [-2 = <em>A</em>].
a.) [-3, -4]
__________________________________________________________
d) [0, -5]
c) -2 = x
b) [-2, -9] → [<em>h</em>, <em>k</em>]
a) -1, 5 = x
Explanation:
b) Both graphs have the binomial of [x - 5][x + 2], so the x-intercepts never altered.
a) Set the binomial equal to zero, and you will get your x-intercepts of [-2, 0] and [5, 0].
__________________________________________________________
b) When <em>A</em> is negative, your graph will have a <em>maximum value</em> [<em>opens down</em>], whereas when <em>A</em> is positive, your graph will have a <em>minimum value</em> [<em>opens up</em>].
a) According to the <em>Vertex Formula</em>, <em>y = A</em>[<em>X - H</em>]<em>² + K</em>, [<em>H</em>, <em>K</em>] represents the vertex, plus, -H gives you the OPPOSITE TERMS OF WHAT THEY REALLY ARE, so be EXTREMELY CAREFUL labeling your vertex. Additionally, K gives you the NORMAL TERMS.
__________________________________________________________
d) The <em>y-intercept</em> is your C-term, so in this case, it is [0, -5].
c) To find the <em>axis of symmetry</em>, use this formula:

Whatever the opposite of your B-term is, you take that and divide it by twice your A-term.
b) To find the vertex, in this case, you have to go from <em>Standard Form</em> to <em>Vertex Form</em> by completing the square, using this formula to get part of your new C-term:
![[\frac{b}{2}]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bb%7D%7B2%7D%5D%5E%7B2%7D%20)
When done, you get this:
![y = {x}^{2} + 4x + 4 \\ \\ y = [x + 2]^{2}](https://tex.z-dn.net/?f=y%20%3D%20%7Bx%7D%5E%7B2%7D%20%2B%204x%20%2B%204%20%5C%5C%20%20%5C%5C%20y%20%3D%20%5Bx%20%2B%202%5D%5E%7B2%7D%20)
Then, you have to deduct some number from 4 that gave you -5 in the first place, and that integer is -9. So, here is the result:
![y = [x + 2]^{2} - 9](https://tex.z-dn.net/?f=y%20%3D%20%5Bx%20%2B%202%5D%5E%7B2%7D%20-%209)
From here, we can see that our vertex is [-2, -9].
a) When the binomial is set to equal to zero, you get this:
![{x}^{2} + 4x - 5 \\ \\ [x - 1][x + 5] = 0 \\ \\ 1, \: -5 = x](https://tex.z-dn.net/?f=%7Bx%7D%5E%7B2%7D%20%2B%204x%20-%205%20%5C%5C%20%20%5C%5C%20%5Bx%20-%201%5D%5Bx%20%2B%205%5D%20%3D%200%20%5C%5C%20%20%5C%5C%201%2C%20%5C%3A%20-5%20%3D%20x)
e) <em>See above photograph</em>
I am joyous to assist you anytime.