Answer:
X= 50°
Y= 70°
Z= 30°
BDE= 30°
2BDE= 60°
Step-by-step explanation:
(2x -70 )+z+(2x+20)=180...(sum of angle on a straight line)
2x -70 = BDE... alternate angles
Y + (2x-70)+(50+x-20) = 180...(sum of angles in a triangle)
X-20 = z ... alternate and opposite angles
(2x -70 )+z+(2x-+20)=180
2x-70 + x-20 +2x +20= 180
5x -70= 180
5x = 250
X= 50°
X-20 = z
50-20= z
30° = z
2x -70 = BDE
2(50) -70 = BDE
100-70 = BDE
30°= BDE
Y + (2x-70)+(50+x-20)
Y + 100-70 +50 +50 -20 = 180
Y + 200-90=180
Y= 70°
2BDE = 2*30
2BDE= 60°
Answer:
Step-by-step explanation:
You have shared only one graph, that of a quadratic function with vertex at (0, 0) and an equation based upon y = ax^2, where a is a constant coefficient.
Please go back to the source of your question and describe the other graphs that were given to you.
The graph that shows a straight line is the linear function.
Answer:
π
V-foam = 4r³( 2 - ----- )
3
Step-by-step explanation:
Let the radius of the sphere be r. Then the volume of the sphere is
V = (4/3)(π)(r³).
Next, recognize that the side length of the cube is 2r, and that the volume of the cube is thus
V = (2r)³, or 8r³.
Then the volume of the foam is equal to the volume of the cube less the volume of the sphere:
V-foam = 8r³ - (4/3)(π)(r³). This could be factored into
π
V-foam = 4r³( 2 - ----- )
3
Answer: -2
=====================================================
Draw a vertical line through 4 on the x axis. This vertical line crosses the parabola at some point (which we'll call point A). Draw a horizontal line from point A to the y axis and note how it lands on y = 12. Therefore the point (4,12) is on this parabola.
Repeat the same steps as before to find that (8,4) is also on the parabola
We need to find the slope of the line through (4,12) and (8,4)
m = (y2 - y1)/(x2 - x1)
m = (4-12)/(8 - 4)
m = -8/4
m = -2
The slope of this line is -2 meaning that the average rate of change from x = 4 to x = 8 is -2.
The line goes down 2 units each time you move to the right 1 unit.