Where is the question????
Here, we are required to find the equation, in terms of w, that could be used to find the dimensions of the storage unit in feet.
The polynomial is;. 3w³ + 22w + 24w = 5440ft³.
From the question;
- <em>Let the width = w</em>
- <em>length,</em><em> </em><em>l</em><em> = 3w + 4</em>
- <em>height,</em><em> </em><em>h</em><em> = w + 6</em>
<em>The </em><em>volume </em><em>of </em><em>a </em><em>rectangular</em><em> </em><em>prism </em><em>is </em><em>given </em><em>by </em><em>the </em><em>product </em><em>of </em><em>its </em><em>length,</em><em> </em><em>width </em><em>and </em><em>height.</em><em> </em><em>Thus</em><em>;</em>
Volume = l × w × h
Therefore, Volume, V = (3w +4) × w × (w +6)
To obtain the required polynomial, we expand the expression for Volume above;
<em>V = (3w² + 4w) × (w + 6)</em>
<em>V = (3w² + 4w) × (w + 6)V = 3w³ + 22w² + 24w.</em>
However, the volume of the rectangular prism has been given to be 5440 cubic feet.
Therefore, the polynomial is;
3w³ + 22w + 24w = 5440ft³.
Read more:
brainly.com/question/9740998
First you have to write the equation. in the scenario, use standard form.
Ax+By=C
plug the numbers in. A=2.50, B=1.25, and C is the total, 356.25. the 180 doesn't come in quite yet.
your equation is 2.50x+1.25y=356.25. now, since they only bought 180 items, you can't go past that.
I am sorry, but I am about to leave for school, and therefore do not have enough time to answer the last of your question. I hope the part I could answer has helped you.
Answer:
There is a 0.82% probability that a line width is greater than 0.62 micrometer.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. The sum of the probabilities is decimal 1. So 1-pvalue is the probability that the value of the measure is larger than X.
In this problem
The line width used for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of 0.05 micrometer, so
.
What is the probability that a line width is greater than 0.62 micrometer?
That is 
So



Z = 2.4 has a pvalue of 0.99180.
This means that P(X \leq 0.62) = 0.99180.
We also have that


There is a 0.82% probability that a line width is greater than 0.62 micrometer.
One solution is the answer