Answer:-27/7
Step-by-step explanation:
I'm going to do elimination to find the price of one pear and one orange.
6p +5o =1.87
12p + 2o=1.90
I'm going to multiply the first equation by -2.
-12p-10o = -3.74
12p + 2o =1.90
-8o= -1.84
-1.84÷ -8= .23= o
12p + 2 (.23) = 1.90
12p + .46 = 1.90
12p = 1.44
p=.12
A pear equals .12, while an orange equals .23.
3×.12= .36
.23× 3 = .69
.69 + .36 = 1.05
It would cost $1.05.
<em> </em><em>FIRST</em><em> </em><em>OF</em><em> </em><em>ALL</em><em> </em><em>THERE</em><em> </em><em>IS</em><em> </em><em>NO</em><em> </em><em>FIGURE</em><em>.</em>
<em>ELSE</em><em> </em><em>I</em><em> </em><em>AM</em><em> </em><em>GIVING</em><em> </em><em>YOU</em><em> </em><em>CLUE</em><em>. </em>
<em>LET</em><em> </em><em>SHEET</em><em> </em><em>IS</em><em> </em><em>RECTANGLE</em><em> </em><em>IN</em><em> </em><em>SHAPE.</em><em> </em><em>SO</em><em> </em><em>,</em><em> </em><em>WE</em><em> </em><em>ASSUME</em><em> </em><em>IT'S</em><em> </em><em>LENGTH</em><em> </em><em>AND</em><em> </em><em>BREADTH</em><em> </em><em>BE</em><em> </em><em>'</em><em>L</em><em>'</em><em> </em><em>&</em><em> </em><em>'</em><em>B</em><em>'</em><em>.</em>
<em>NOW</em><em> </em><em>WE</em><em> </em><em>CAN</em><em> </em><em>FIND</em><em> </em><em>DIAGONAL</em><em> </em><em>BY</em><em> </em><em>USING</em><em> </em><em>PYTHAGORAS</em><em> </em><em>THEOREM</em><em>. </em>
<em>
</em>
Answer: They all go into (3/2)/(4/5) = n
Step-by-step explanation:
First Blue Box n = 4/5 / 2/3 = 4/5 * 3/2 = 3/5
Second Blue Box n = 3/2 / 4/5 = 3/2 * 5/4 = 15/8
Plug in n for the 3 smaller boxed equations
Answer:
we will get an isosceles triangle as a result.
Step-by-step explanation:
when the point A is joined to B and C we will get the side AB and AC of equal length.
length of AB and AC could be calculated easily with the help of pythagorean theorem where the base and perpendicular are of length 4in and 1in .
when we will cut a plane including the the points A,B and C we will get a triangle whose sides AB and AC are equal but BC would be of distinct length.
Hence, the resultant figure will be an isosceles triangle.