Answer:
conserved
Explanation:
During this process the energy is conserved
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
Answer:
The three "accelerators" are: the throttle, the steering wheel and the brakes.
Explanation:
Acceleration means change in velocity. But this change may be in module or in direction.
Car throttle will increase the velocity module of the car and brakes wil diminish it. On the other hand, the steering wheel will change the direction of the velocity.
Hope my answer helps you. Have a nive day!
Answer: v= 160ft/s
a=32ft/s^2 constant
Explanation:
s(t)=400-16t^2 derivative of position is velocity v(t) and derivative of velocity is acceleration a(t) so let s(t)=0 to find the time of flight to reach the ground and take the two derivatives and use the time found and solve. Also acceleration is a constant as it’s gravity.
0=400-16t^2
400=16t^2
25=t^2
t=5s
ds/dt=v(t)=0-32t
dv/dt=a(t)=-32 constant(gravity)
v(t)=-32(5s)= -160ft/s negative sign is only showing direction