Answer:
Step-by-step explanation:
10 multiply 1/3 makes three full cups. Fu*kin* idiot
You figure out how long it would take a car traveling at 25 mph
to cover 360 ft. Any driver who does it in less time is speeding.
(25 mi/hr) · (5,280 ft/mile) · (1 hr / 3,600 sec)
= (25 · 5280 / 3600) ft/sec = (36 and 2/3) feet per second.
To cover 360 ft at 25 mph, it would take
360 ft / (36 and 2/3 ft/sec) = 9.82 seconds .
Anybody who covers the 360 feet in less than 9.82 seconds
is moving faster than 25 mph.
_________________________________
If you're interested, here's how to do it in the other direction:
Let's say a car covers the 360 feet in ' S ' seconds.
What's the speed of the car ?
(360 ft / S sec) · (1 mile / 5280 feet) · (3600 sec/hour)
= (360 · 3600) / (S · 5280) mile/hour
= 245.5 / S miles per hour .
The teacher timed one car crossing both strips in 7.0 seconds.
How fast was that car traveling ?
245.5 / 7.0 = 35.1 miles per hour
Another teacher timed another car that took 9.82 seconds to cross
both strips. How fast was this car traveling ?
245.5 / 9.82 = 25 miles per hour
Kindly refer to attachment for solution.
Hope it helps ^_^
7 that is what t should be
Hi, I actually just took the test and got 100%
Remember: When plotting the points for this equation, make sure to always first plot the ones that correspond to the first linear equation, and then plot the ones that correspond to the second linear equation.
The points on the line should be for the first linear equation, (4,0) and (8,0). I got this answer by first converting the linear equation, 2x+y=8 from standard form to slope-intercept form. To do this, I subtracted 2x from both sides of the equation. So now it reads as y=8-2x. After this step was completed, I then graphed my first linear equation.
The points on the line should be for the first linear equation, (2,4) and (6,6).
I got this answer by first converting the linear equation, -x+2y=6 into slope-intercept form. To do this, I subtracted -x from both sides of the equation. Then I had to divide the 2 into both -x and 6. So now it reads as y= 6/2-x/2. After this step was completed, I then graphed my second and final linear equation.
I hope this helps!