Answer:
c= 3
Step-by-step explanation:
0.2(10 -5c)= 5c -16
<em>Expand</em><em>:</em>
0.2(10) +0.2(-5c)= 5c -16
2 -c= 5c -16
<em>Bring</em><em> </em><em>all</em><em> </em><em>c</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>,</em><em> </em><em>constant</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em>:</em>
5c +c= 2 +16
<em>Simplify</em><em>:</em>
6c= 18
<em>Divide</em><em> </em><em>by</em><em> </em><em>6</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>
c= 18 ÷6
c= 3
Answer:
37. {-1, -1}.
Step-by-step explanation:
I'll solve the first one . The other can be solved in a similar way. We can use the method of elimination.
x1 - x2 = 0
3x1 - 2x2 = -1
We can multiply the first equation by -2. We then have an equation containing + 2x2 so when we add this to the second equation the 2x2 will be eliminated
So the first equation becomes:
-2x1 + 2x2 = 0 Bring down the second equation:
3x1 - 2x2 = -1 Now adding, we get:
x1 + 0 = -1
so x1 = -1.
Now we substitute this value of x1 in the original first equation:
-1 - x2 = 0
-1 = x2
x2 = -1.
So the solution set is {-1, -1}.
If there are more than 2 equations you can use a combination of substitutions and eliminations.
4.125 x 14 = 57.75
So 57.75 is the answer and I have to show my work
Answer:
En matemáticas, el límite de una función es un concepto fundamental en el cálculo y el análisis sobre el comportamiento de esa función cerca de una entrada particular. Las definiciones formales, concebidas por primera vez a principios del siglo XIX, se dan a continuación. Informalmente, una función f asigna una salida f (x) a cada entrada x.
Step-by-step explanation:
-8x-12+y^2
This is my aswer haha