Answer:
V'(t) = 
If we know the time, we can plug in the value for "t" in the above derivative and find how much water drained for the given point of t.
Step-by-step explanation:
Given:
V =
, where 0≤t≤40.
Here we have to find the derivative with respect to "t"
We have to use the chain rule to find the derivative.
V'(t) = 
V'(t) = 
When we simplify the above, we get
V'(t) = 
If we know the time, we can plug in the value for "t" and find how much water drained for the given point of t.
Answer:
7
Step-by-step explanation:
no explanation needed the answer is in the question
<span>Let the height of tree be denoted as AB and the shadow cast by the tree be BE. ABE is the triangle formed the tree, rays and the ground. Let the height of the person be CD and the length of his shadow be DE. CDE is the triangle formed by the person, rays and the ground.
We have two triangles. Both the person and the tree stand vertically over the horizontal ground, therefore they make 90 degrees with the ground. The angle formed at the ground is the same for the both the triangles. Therefore, by AA similarity the two triangles are similar.
We know that if two triangles are similar, then their sides are proportional.
Therefore,
AB/CD =BE/DE
AB/6 = 143/11
AB= (143/11) *6
AB = 78 ft.</span>
B I’m not very good at math buh I’m sure that’s the answer