4) You know slope-intercept form is y=mx+b. So using these two given points, you can find the slope!
(-8,5) (-3,10) [Use the y1-y2 over x1-x2 formula to solve for slope]
10 - 5 5
--------- = ----- = 1
-3-(-8) 5
Hurray! You got a slope of one. Now substitute this back into your original equation:
y=mx+b --> y=1x+b
Next, we find what our "b" is, or what our y-intercept is:
Using one of the previous points given, substitute them into the new equation:
[I used the point (-3, 10) ]
y=1x+b
10=1(-3)+b SUBSTITUTE
10=-3+b MULTIPLY
10=-3+b
+3 +3 ADD
----------
13=b SIMPLIFY
So, now we have our y-intercept. Use this and plug it into the equation:
y=1x+b --> y=1x+13
y=1x+13 is our final answer.
5) So for perpendicular lines, your slope will be the opposite reciprocal of the original slope. (Ex: Slope is 2, but perpendicular slope is -1/2)
We have the equation y= 3x-1, so find the reciprocal slope!
--> y=-1/3x-1
Good! Now we take our given point, (9, -4) and plug it into the new equation:
y=-1/3x-1
-4=-1/3(9)+b SUBSTITUTE and revert "-1" to "b", for we are trying to find the y- -4=-3+b intercept of our perpendicular equation.
+3 +3 ADD
--------
-1=b SIMPLIFY
So, our final answer is y=-1/3x+(-1)
6) I don't know, sorry! :(
Seagull because the owl has 5 5/9 and the sea 8 1/3
Similarities:
Have a consistent change for every interval can be represented as functions of a variable points lie on a line.
Differences: linear equations represent all solutions to all x values, whereas arithmetic sequences pick integer spacing
Answer:

Step-by-step explanation:
Assuming this complete problem: "A cell tower is located at (-8, 4) and transmits a circular signal that covers three major cities. The three cities are located on the circle and have the following coordinates: G (-4, 7), H (-13, 4), and I (-8, -1). Find the equation of the circle"
For this case the generla equation for the circle is given by:

From the info we know that the tower is located at (-8, 4) so then h = -8 and k = 4, so then we need to find the radius. So we have the equation like this:
If the 3 points are on the circle then satisfy the equation. We can use the first point (-4,7) and if we replace we can find the value for 

So then 
And if we replace the second point we got this:

And for the third point we have:

And we got the same result.
So then our final equation is given:

For this case we must find an expression equivalent to:
By definition of power properties we have to meet:

So, rewriting the expression we have:

Answer:
Option B
