The answer to your question is D
1 you run out of fuel 2 it takes a long time 3 it’s hard to get back 4 the conditions are constantly changing making it harder to predict what could happen. Look at Apollo 12 as a example
Answer:
When the rule of 70 applies to population, dividing 70 by the percentage of population growth should equal the time (in years) that the population needs to be double (option A)
Explanation:
The rule of 70 is useful to calculate the time in which a variable of any type can be duplicated. The calculation is done by dividing the number 70 by the percentage of growth of the variable.
<u>If the rule of 70 is applied to the population, it is possible to calculate, based on its growth rate, the time that population would need to double</u>.
If, for example, the growth rate of a population is 3 percent:
70 / 3 = 23,33
This indicates that a population, with a growth rate of 3% would need about 23,33 years to double.
Answer:
"As a molecule moves through the plasma membrane it passes through <em>a hydrophilic layer of phospholipid heads then a hydrophobic layer of phospholipid tails and then another hydrophilic layer of phospholipid heads".</em>
Explanation:
Biological membranes are formed by two lipidic layers, proteins, and glucans.
Lipids characterize for being amphipathic molecules, which means that they have both a hydrophilic portion and a hydrophobic portion at the same time. These molecules have a lipidic head that corresponds to a negatively charged phosphate group, which is the polar and hydrophilic portion. They also have two lipidic tails that correspond to the hydrocarbon chains -the apolar and hydrophobic portion- of the fatty acids that esterify glycerol.
Membrane lipids are arranged with their hydrophilic polar heads facing the exterior and the interior of the cells, while their hydrophobic tails are against each other, constituting the internal part of the membrane.
Through this lipidic bilayer, some molecules can move from one side of the cell to the other, which happens because of concentration differences. When this occurs, molecules must pass through the hydrophilic layer of phospholipid heads then through the hydrophobic layer of phospholipid tails and then again through another hydrophilic layer of phospholipid heads.
D surface tension because, adhesion is sticking, b makes no sense for this question, and heat has nothing to do with it either, because it distributes it's weight throughout its legs so it doesn't sink (it doesn't weigh much so this works.)
Hope this helps don't forget to hit that heart :)