Answer:
cm per minute.
Step-by-step explanation:
We have been given that a box has a width of 10 cm and a length of 17 cm. The volume of the box is decreasing at a rate of 527 cubic cm per minute, with the width and length being held constant.
We know that volume of a cuboid is length times width times height.

Upon substituting our given width and length, we will get:


Now, we will find derivative of volume with respect to time as:

Since the volume of the box is decreasing at a rate of 527 cubic cm per minute, so we will substitute
as:



Therefore, the rate of change in height is
cm per minute.
Answer:
A)

B)

Step-by-step explanation:
<em>x</em> and <em>y</em> are differentiable functions of <em>t, </em>and we are given the equation:

First, let's differentiate both sides of the equation with respect to <em>t</em>. So:
![\displaystyle \frac{d}{dt}\left[xy\right]=\frac{d}{dt}[6]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdt%7D%5Cleft%5Bxy%5Cright%5D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6%5D)
By the Product Rule and rewriting:
![\displaystyle \frac{d}{dt}[x(t)]y+x\frac{d}{dt}[y(t)]=0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdt%7D%5Bx%28t%29%5Dy%2Bx%5Cfrac%7Bd%7D%7Bdt%7D%5By%28t%29%5D%3D0)
Therefore:

A)
We want to find dy/dt when <em>x</em> = 4 and dx/dt = 11.
Using our original equation, find <em>y</em> when <em>x</em> = 4:

Therefore:

Solve for dy/dt:

B)
We want to find dx/dt when <em>x</em> = 1 and dy/dt = -9.
Again, using our original equation, find <em>y</em> when <em>x</em> = 1:

Therefore:

Solve for dx/dt:

<h3>
Answer: Choice C. 4*sqrt(6)</h3>
====================================================
Explanation:
Each cube has a side length of 4. Placed together like this, the total horizontal side combines to 4+8 = 8. This is the segment HP as shown in the diagram below. I've also added point Q to form triangle HPQ. This is a right triangle so we can find the hypotenuse QH
Use the pythagorean theorem to find QH
a^2 + b^2 = c^2
(HP)^2 + (PQ)^2 = (QH)^2
8^2 + 4^2 = (QH)^2
(QH)^2 = 64 + 16
(QH)^2 = 80
QH = sqrt(80)
Now we use segment QH to find the length of segment EH. Focus on triangle HQE, which is also a right triangle (right angle at point Q). Use the pythagorean theorem again
a^2 + b^2 = c^2
(QH)^2 + (QE)^2 = (EH)^2
(EH)^2 = (QH)^2 + (QE)^2
(EH)^2 = (sqrt(80))^2 + (4)^2
(EH)^2 = 80 + 16
(EH)^2 = 96
EH = sqrt(96)
EH = sqrt(16*6)
EH = sqrt(16)*sqrt(6)
EH = 4*sqrt(6), showing the answer is choice C
-------------------------
A shortcut is to use the space diagonal formula. As the name suggests, a space diagonal is one that goes through the solid space (rather than stay entirely on a single face; which you could possibly refer to as a planar diagonal or face diagonal).
The space diagonal formula is
d = sqrt(a^2+b^2+c^2)
which is effectively the 3D version of the pythagorean theorem, or a variant of such.
We have a = HP = 8, b = PQ = 4, and c = QE = 4 which leads to...
d = sqrt(a^2+b^2+c^2)
d = sqrt(8^2+4^2+4^2)
d = sqrt(96)
d = sqrt(16*6)
d = sqrt(16)*sqrt(6)
d = 4*sqrt(6), we get the same answer as before
The space diagonal formula being "pythagorean" in nature isn't a coincidence. Repeated uses of the pythagorean theorem is exactly why this is.
Answer:
y-intercept = -4
Step-by-step explanation:
equation of a line: y=mx+b
two points given are (5, -6.5) and (-12, 2)
first we can easily find value of m or the slope, by using the slope formula. the value of m=-0.5.
formua to find m:
= -0.5
to find the value of b (the y-intercept), we need to plug in a y and x value, we are given 2 ordered pairs, you can use either one and plug x-value in for x and the y-value in for y.
if i plug in (5, -6.5), my equation looks like this: -6.5=5(-0.5)+b
then you just solve for b and it turns out to be -4.