1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
8

Integrating sums of functions

Mathematics
1 answer:
Andrei [34K]3 years ago
8 0

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

You might be interested in
8. Find the values of angles x, y,
Eddi Din [679]

Answer:

option A

Step-by-step explanation:

option A is the correct answer of this question.

<em><u>plz </u></em><em><u>mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> plzzzz</u></em><em><u>.</u></em>

<em><u>hope</u></em><em><u> this</u></em><em><u> will</u></em><em><u> be</u></em><em><u> helpful</u></em><em><u> to</u></em><em><u> you</u></em><em><u> </u></em>

8 0
3 years ago
Read 2 more answers
Evaluate m + n2 if we know m = 2 and n = –2.
Inessa05 [86]
<span> m + n^2
= 2 + (-2)^2
= 2 + 4
= 6

answer is 6</span>
8 0
3 years ago
If Lin runs 21 laps at the same rate (1.2 minutes per lap) how long does it take her?
Firlakuza [10]

Answer:

It takes her 25.2 mintes

Step-by-step explanation:

You can just multiply 21 by 1.2 because that's how long she takes per lap and you can get 25.2

8 0
3 years ago
Read 2 more answers
One angle of a triangle measures 65°. The other two angles are in a ratio of 3:20. What are the measures of those two angles?
Nataly_w [17]

Answer:

15° and 100°

Step-by-step explanation:

65 + 3x + 20x = 180

23x = 115

x = 5

3 × 5 = 15, 20 × 5 = 100. So the other two angles measure 15° and 100°.

3 0
2 years ago
Buy 20 ounces nuts puts equal amount of ounces in each of 3 bags. How many ounces nuts in each bag. Answer in whole number and a
satela [25.4K]
There will be 6 bags with a leftover of 2/3 ounces of nuts
7 0
3 years ago
Other questions:
  • A funnel is made up of a partial cone and a cylinder as shown in the figure. The maximum amount of liquid that can be in the fun
    15·2 answers
  • Vlad spent 20 minutes on his history homework and then completely solved x math problems that each took 2 minutes to
    13·1 answer
  • Help me please I need this for tomorrow <br> Questions:24,25,26 and 27 please<br> and Godbless you
    7·1 answer
  • Which of these is an example of an overdraft?
    6·1 answer
  • 1+1÷6×(8x)6 pls answer pls pls
    13·1 answer
  • Are 2x^3y &amp; 2xy^2 like terms
    9·1 answer
  • I uploaded the answer to a file hosting below
    14·1 answer
  • Help me with this pls and thank you
    14·2 answers
  • In ALMN, the measure of ZN=90°, the measure of ZL=25°, and LM = 14 feet. Find
    5·1 answer
  • What is the measure of ∠B?<br><br>A is 28 degrees<br><br>C is 36 degrees
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!