1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
8

Integrating sums of functions

Mathematics
1 answer:
Andrei [34K]3 years ago
8 0

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

You might be interested in
5. Kal Tire installs automobile tires on a first-come first-served basis. A random sample of 50 customers experienced an average
Rainbow [258]

5.7099 is the margin of error.

<h3>What is standard deviation ?</h3>

A standard deviation (or σ) is a measure of how dispersed the data is in relation to the mean.

Low standard deviation means data are clustered around the mean, and high standard deviation indicates data are more spread out.

According to the question,

The standard sampling error of the sample mean is σₓ ,

The sampling distribution is: N (u,σₓ/n)

Therefore,

By using the standard deviation formula:

σₓ = √∑(xi -μ)/N

Where,

∑= population standard deviation

N= the size of the population

xi= each value from the population

μ =the population mean

So ,

σₓ = \frac{20.6}{\sqrt{50} } = 2.913

Since, a = 1- 95% = 0.05

therefore Z\frac{a}{2} = (1-0.005 x 2) = 1.959964

Here, the margin of error for a 95% confidence interval for this sample is given by:

Z\frac{a}{2} * σₓ = 1.959964 x 2.913    

           = 5.7099

5.7099 is the margin of error for a 95% confidence interval for this sample.

Learn more about standard deviation here:

brainly.com/question/13905583

#SPJ1

7 0
2 years ago
56÷(7-9)^3 -24/23-5×4​
yulyashka [42]

Answer:

= −28.043478261

Step By Step Explanation

Answer From Gauth Math

7 0
3 years ago
Read 2 more answers
DB _____ RT Choose the relationship symbol to make a true statement. <br> &gt; <br> =
Nikitich [7]
DB = RT
We know this to be true because both have one “tally” mark indicating that they are congruent (same)
8 0
3 years ago
The length of Hillcrest Garden is 6 feet more than its width. A 3-foot wide walkway surrounds the outside of the garden. The tot
Ne4ueva [31]

Answer: The dimensions of the garden would be 18 feet and 24 feet.

Step-by-step explanation:

Let the width of garden be 'x'.

Let the length of garden be 'x+6'

Since there is 3 foot wide walkway surrounds the outside the garden.

Area of walkway = 288 square feet

So, According to question, it becomes,

2z(x+y+2z)\\\\288=2\times 3(x+x+6+2\times 3)\\\\288=6(2x+6+6)\\\\288=6(2x+12)\\\\\dfrac{288}{6}=2x+12\\\\48=2x+12\\\\48-12=2x\\\\36=2x\\\\x=\dfrac{36}{2}\\\\x=18

Width = 18+6 =24 feet

Hence, the dimensions of the garden would be 18 feet and 24 feet.

4 0
3 years ago
Even betteerrrr u guys like it &lt;3
frez [133]

Answer:

ummm

Step-by-step explanation:

what's that???

quiet didnt get it lol¿

7 0
3 years ago
Other questions:
  • A baseball stadium holds 15,002 seats. The lower level has 50 fewer than three times as many seats as the upper
    13·2 answers
  • Click on the graph to choose the correct answer to the equation. 3x - y ≥ 5 hurry
    8·2 answers
  • Suppose you purchase a $1000 bond with a 4% coupon. What is the periodic
    6·1 answer
  • 50 POINTS! SHOW ALL WORK INCLUDING GRAPH!
    14·1 answer
  • Jasmin, Quinn, and Maddy are rock climbing. Jasmin is 42 ½ feet below Quinn. Maddy is 67 ¾ feet above Jasmin. What is Maddy's po
    8·1 answer
  • PLS HELP WITH SCREENHOT ASAP<br><br>I GIVE BRAINLIEST THANKS :)
    15·2 answers
  • Solve for 0. Round your answer to the nearest tenth.<br> 29<br> 14
    12·1 answer
  • An object is launched vertically in the air at 36.75 meters per second from a 6-meter-tall platform. Using the projectile motion
    9·1 answer
  • BRAINLIEST IF RIGHT!!! HURRY!​
    5·1 answer
  • Find the solution to the system of equations.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!