1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serga [27]
3 years ago
8

Integrating sums of functions

Mathematics
1 answer:
Andrei [34K]3 years ago
8 0

Answer:

(a) -12

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Calculus</u>

Integrals

Integration Rule [Reverse Power Rule]:                                                                    \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Swapping Limits]:                                                                \displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:                                                           \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                         \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:                                                                \displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                      \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)  

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int\limits^6_4 {f(x)} \, dx = 5<u />

<u />\displaystyle \int\limits^4_{10} {f(x)} \, dx = 8<u />

<u />\displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx<u />

<u />

<u>Step 2: Solve Pt. 1</u>

  1. [Integral] Rewrite [Integration Property - Addition]:                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = \int\limits^{10}_6 {4f(x)} \, dx + \int\limits^{10}_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4\int\limits^{10}_6 {f(x)} \, dx + 10\int\limits^{10}_6 {} \, dx

<u>Step 3: Redefine</u>

<em>Manipulate the given integral values.</em>

  1. [Integrals] Combine [Integration Property - Splitting Integral]:                     \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx = \int\limits^6_{10} {f(x)} \, dx
  2. [Integral] Rewrite:                                                                                           \displaystyle \int\limits^6_{10} {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_{10} {f(x)} \, dx
  3. [Integral] Substitute in integrals:                                                                    \displaystyle \int\limits^6_{10} {f(x)} \, dx = 5 + 8
  4. [Integral] Add:                                                                                                 \displaystyle \int\limits^6_{10} {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:                        \displaystyle -\int\limits^{10}_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:                             \displaystyle \int\limits^{10}_6 {f(x)} \, dx = -13

<u>Step 4: Solve Pt. 2</u>

  1. [Integral] Substitute in integral:                                                                     \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^{10}_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                      \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^{10}_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:                                                                   \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:                                                                                           \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:                                                                                                 \displaystyle \int\limits^{10}_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

You might be interested in
Simplify the given equation.
spin [16.1K]

Answer:

x=8/9

Step-by-step explanation:

5x+2(x-3)=-2(x-1)

5x+2x-6=-2x+2

7x-(-2x)-6=2

7x+2x=2+6

9x=8

x=8/9

8 0
3 years ago
Read 2 more answers
Given that x equals 6 and y equals -4
aleksandr82 [10.1K]

Answer: 42/12 or 3.5

Step-by-step explanation:

5(6)/3(-4)= -30/12

-30/12 + 6 or -30/12 + 72/12 = 42/12 or 3.5

7 0
3 years ago
Read 2 more answers
1 2 3 4 5 6 7 8 9 10
Sunny_sXe [5.5K]

Answer:

x^{2} + 2

Step-by-step explanation:

Group:

(2x^{3} + 4x) (-5x^{2} - 10)

2x (x^{2} + 2)     -5 (x^{2} + 2)

Common binomial factor = (x^{2} + 2)

4 0
4 years ago
Read 2 more answers
What is a word problem for 3.05 divided by 0.05?
iogann1982 [59]
<span>Number story for 3.05 divided by 0.05

Hope that helps! (:</span>
3 0
3 years ago
Using the factoring process, what constant is added to the RIGHT side of the quadratic equation 5x2+ 10x + ___ = 7 + ___ in orde
pshichka [43]

Answer:

D. 100

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Pleasse help thank you.
    8·1 answer
  • A scientist creates a colony of bacteria in a dish. This type of
    14·1 answer
  • What are the missing angle measures in parallelogram RSTU
    11·2 answers
  • How do you subtract: a negative number minus a positive number?
    8·1 answer
  • Please help me with this match problem I'm lost
    13·1 answer
  • A pizza shops sells a large pizza with two toppings for $14.50. A large pizza with five toppings costs $19.00. Determine the cos
    15·1 answer
  • Find the average rate of change for f(x) = x2 + 9x + 18 from x = 10 to x = 20.
    12·1 answer
  • If F(x)=4x-3over7,which of the following is the inverse of F(x)
    7·1 answer
  • Which shows the dilation with a possible scale factor of One-half?
    12·2 answers
  • The area of cross section of the end A of a U tube is 0.01 m square. The area of cross section at the end B is 0.1 m square. If
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!