Answer:
r = i + j + (-2/3)(3i - j)
Step-by-step explanation:
Vector Equation of a line - r = a + kb ; where r is the resultant vector of adding vector a and vector b and k is a constant
if a = i + j ; b = t(3i - j) and r = -i +s(j)
for this to be true all the vector components must be equal
summing i 's
i + 3ti = -i; then t = -2/3
j - tj = sj; then s = 1-t; substitue t; s=1+2/3 = 5/3
so r = i + j + (-2/3)(3i - j) which will symplify to -i + 5/3j
Since there are two black queens out of 52 cards, there is a 2/52 chance of drawing a black queen first. This is equivalent to a 1/26 chance.
Now that we have removed a black queen, there are 51 cards left in the deck. 26 of them are red because we only took away a black card. This means that there is a 26/51 of drawing a red card next.
In order to find the probability of both of these happening, we multiply the two together. 1/26 * 26/51 = 26/1326. This reduces to 1/51. So, there is a 1/51 chance of drawing a black queen, then a red card.
C.24 is supplementary to 7
Answer:
Step-by-step explanation:
(i)

(ii)
x=5 ==> y=2*5²=50
(iii)
