(3a^4 * b^-2) * (2a^7 * b^-1)
= 6*a^(4+7)*b^(-2-1)
= 6*a^11*b^-3
Answer:
-4sinθcosθ
Step-by-step explanation:
Note:
1. (a + b)^2 = a^2 + 2ab + b^2
2. (a - b)^2 = a^2 - 2ab + b^2
3. sin^2θ + cos^2θ = 1
(sinθ -cosθ)^2 - (sinθ + cosθ)^2
= sin^2θ - 2sinθcosθ + cos^2θ - (sin^2θ + 2sinθcosθ + cos^2θ)
= sin^2θ + cos^2θ - 2sinθcosθ - (sin^2θ + cos^2θ + 2sinθcosθ)
= 1 - 2sinθcosθ - (1 + 2sinθcosθ)
= 1- 2sinθcosθ -1 - 2sinθcosθ
= - 2sinθcosθ - 2sinθcosθ
= -4sinθcosθ
Given,
Cylinder A has a volume of 6 cubic units
and height =3 units
The radius of cylinder A,
![\begin{gathered} r=\sqrt[]{\frac{V}{\pi h}} \\ =\sqrt[]{\frac{6}{3\pi}} \\ =0.8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20r%3D%5Csqrt%5B%5D%7B%5Cfrac%7BV%7D%7B%5Cpi%20h%7D%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%5Cfrac%7B6%7D%7B3%5Cpi%7D%7D%20%5C%5C%20%3D0.8%20%5Cend%7Bgathered%7D)
To find the volume of a cylinder B

Thus the volume of cylinder B is 6.03
<span>I get 0.26% for part A and 75% for part B. My work is in the attached document.</span>