The polygon in option 3 is not octagon at all, it is heptagon (or 7-sided polygon).
A convex octagon has no angles pointing inwards. More precisely, no internal angles can be more than 180°.
When some internal angle is greater than 180°, it is concave.
In option 2 you can see that one angle is pointing inward, then this octagon is concave.
Answer: correct choice is B.
Answer:
6. 5 % is the answer
Step-by-step explanation:
formula =
<em>R</em><em> </em><em>=</em><em> </em><em>I</em><em> </em><em>×</em><em> </em><em>1</em><em>0</em><em>0</em><em> </em><em>/</em><em> </em><em>P</em><em> </em><em>×</em><em> </em><em>T</em>
Answer:
either (-1,-1) or (-4,-4)
Step-by-step explanation:
There appears to be a positive correlation between the number of hour spent studydng and the score on the test.
When identifying the independent and dependent quantities, we think about what would cause the other to change. The score on the test would not cause the number of hours spent studying to change; rather, the number of hours spent studying would cause the score to change. This means that the number of hours studying would be the independent quantity and the score would be the dependent quantity.
Plotting the graph with the time studying on the x-axis (independent) and the score on the y-axis (dependent) gives you the graph shown. You can see in the image that there seems to be a positive correlation; the data seem to generally be heading upward.
The coordinates of the focus of the parabola are (4 , 0)
Step-by-step explanation:
The standard form of the equation of the parabola is
(x - h)² = 4p(y - k), where
- The vertex of the parabola is (h , k)
- The focus is (h , k + p)
- The directrix is at y = k - p
∵ The equation of the parabola is 12(y + 3) = (x - 4)²
- The form of the equation is (x - h)² = 4p(y - k), compare
between them to find h, k and p
∴ h = 4
∵ - k = 3
- Multiply both sides by -1
∴ k = -3
∵ 4p = 12
- Divide both sides by 4
∴ p = 3
∵ The coordinates of the focus are (h , k + p)
∵ h = 4 , k = -3 , p = 3
∴ k + p = -3 + 3
∴ k + p = 0
∴ The focus is (4 , 0)
The coordinates of the focus of the parabola are (4 , 0)
Learn more:
You can learn more about the equation of the parabola in brainly.com/question/9390381
#LearnwithBrainly