1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
9

In which Quadrant does the point (21 , 15) Lie?

Mathematics
2 answers:
Natali [406]3 years ago
7 0
It is located in the first or I quadrant
Eva8 [605]3 years ago
4 0

It lies in first quadrant as it is in the form (+,+).

You might be interested in
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
Un aserradero adquiere maquinaria y equipo para el corte de madera, que va perdiendo valor conforme transcurren los años, hasta
Verdich [7]

Answer:

-1 5

Step-by-step explanation:

7 0
3 years ago
One step inequalities
pishuonlain [190]
Whats the question ? 
3 0
3 years ago
Coordinate grid with graph of a straight line with a negative slope. The line passes through the first, second, and fourth quadr
Blababa [14]
Since the straight line has a negative slope and passes therough the first, second and fourth quadrants, the value of y when x = -3 will be a positive number greater than 3.

Therefore, the correct answer is option A (y = 4)
4 0
3 years ago
What’s the square root of 36?
Sonja [21]

Answer:

6

Step-by-step explanation:

the square root is basically exponents 6*6 is 6^2 which is 36.  

8 0
3 years ago
Read 2 more answers
Other questions:
  • Esteban has a big jar of change in his room. he has 600600600 coins total, and 240240240 of them are pennies. what percentage of
    10·3 answers
  • 1.55 rounded to the nearest tenth
    15·1 answer
  • HELP ME PLZ SO VERY PLZ PLZ
    15·2 answers
  • One baseball team won 12 games throughout their entire season. Of all their games this team won 60% of them. Given this how many
    13·1 answer
  • Please need help thank you
    8·1 answer
  • Please help fast I am really struggling plus I am being timed please help hurry !!thank you in Advance! Plus if you want a 10 po
    15·1 answer
  • A farmer wants to build a fence enclosing a rectangular region bordering a river. If the farmer has 500 feet of fencing, find th
    12·1 answer
  • A person is standing 17 feet away from a tree and there is a bird's nest in the tree 10 feet above the ground. What is the angle
    14·1 answer
  • 80÷(42÷25)+3.75 I need the answer fast
    10·2 answers
  • Can someone please help me with this?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!