First of all, sex is a type of sexual reproduction. It’s meiosis. In meiosis, it has different stages and one of those stages is called Prophase 1. In prophase 1, genetic variation occurs.
Answer:
0.483
Explanation:
The given population is in Hardy-Weinberg equilibrium. If the gene has two alleles, the sum total of the frequencies of these two alleles will be one.
Therefore, the total of the frequency of allele B and frequency of allele b will be 1. f(B) + f(b)=1
If the frequency of allele "B" is 0.59, then the frequency of allele "b" will be=1-0.59= 0.41
The frequency of heterozygous genotype in the population= 2pq
p= frequency of the dominant allele
q= frequency of the recessive allele
So, 2pq= 2 x 0.59 x 0.41 = 0.483
Answer: Biological polymers are large molecules composed of many similar smaller molecules linked together in a chain-like fashion. The individual smaller molecules are called monomers. When small organic molecules are joined together, they can form giant molecules or polymers. These giant molecules are also called macromolecules. Natural polymers are used to build tissue and other components in living organisms.
Generally speaking, all macromolecules are produced from a small set of about 50 monomers. Different macromolecules vary because of the arrangement of these monomers. By varying the sequence, an incredibly large variety of macromolecules can be produced. While polymers are responsible for the molecular "uniqueness" of an organism, the common monomers are nearly universal.
The variation in the form of macromolecules is largely responsible for molecular diversity. Much of the variation that occurs both within an organism and among organisms can ultimately be traced to differences in macromolecules. Macromolecules can vary from cell to cell in the same organism, as well as from one species to the next.
Explanation:
Saphrophytic nutrition is all about obtaining nutrients from non-living organic matter, usually dead and decaying plant or animal matter, by absorbing soluble organic compounds.