If <em>x</em>² + <em>y</em>² = 1, then <em>y</em> = ±√(1 - <em>x</em>²).
Let <em>f(x)</em> = |<em>x</em>| + |±√(1 - <em>x</em>²)| = |<em>x</em>| + √(1 - <em>x</em>²).
If <em>x</em> < 0, we have |<em>x</em>| = -<em>x</em> ; otherwise, if <em>x</em> ≥ 0, then |<em>x</em>| = <em>x</em>.
• Case 1: suppose <em>x</em> < 0. Then
<em>f(x)</em> = -<em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = -1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = -1/√2 → <em>y</em> = ±1/√2
• Case 2: suppose <em>x</em> ≥ 0. Then
<em>f(x)</em> = <em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = 1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = 1/√2 → <em>y</em> = ±1/√2
In either case, |<em>x</em>| = |<em>y</em>| = 1/√2, so the maximum value of their sum is 2/√2 = √2.
Answer:
The mean of W is 55 ounces.
The standard deviation of W is 4.33 ounces.
Step-by-step explanation:
Let X: weight of a red delicious apple, and B: the weight of the box and packing material.
The distribution that will represent W: the total weight of the packaged 5 randomly selected apples will be also normally distributed.
Applying the property of the mean:
, the mean of W will be:

Applying the property of the variance:
, the variance of W will be:

The mean standard deviation of W will be the squared root of V(W):

The mean of W is 55 ounces.
The standard deviation of W is 4.33 ounces.
Answer:
total students = 40probability of selecting a student from art club= 12/40= 3/10
Step-by-step explanation: because am big math
first you divide14 and 5 and you get 2.8 then you turn 2.8 into 2 8/10
2 8/10 is your answer
Answer:
yes thats right
Step-by-step explanation: