Answer:
83.33 cajas estándar de frambuesas y 51.67 cajas de lujo de frambuesas.
Step-by-step explanation:
Representemos el número de cajas como
A = caja estándar de frambuesas
B = caja de lujo de frambuesas
Caja estándar de frambuesas = $ 7 Caja de lujo de frambuesas = 10.
A + B = 135 ......... Ecuación 1
B = 135 - A
7A + 10B = 1100 ........... Ecuación 2
Sustituir
135 - A para B en la ecuación 2
7A + 10 (135 - A) = 1100
7A + 1350 -10A = 1100
7A - 10A = 1100-1350
-3A = - 250
A = 250/3
A = 83.33 cajas
Sustituye 83.33 por A en la ecuación 1
A + B = 135
83,33 + B = 135
B = 135 - 83.33 = 51.67 cajas
Por lo tanto, vendió,
83.33 cajas estándar de frambuesas y 51.67 cajas de lujo de frambuesas.
Answer:
-1
Step-by-step explanation:
using PEDMAS(parentheses, exponents, division, multiply, addition, subtraction) to solve the problem
First, multiply (-5)(2) and 2(-3)
(-5)(2) – 2(-3) + 3
=-10-(-6)+3
=-10+6+3
add -10+6
-4+3
Add -4+3
-4+3
=-1
Therefore, (-5)(2) – 2(-3) + 3 is equal to -1
The question is incorrect
the correct question is
A local citizen wants to fence a rectangular community garden. The length of the garden should be at least 110 ft,and the distance around should be no more than 380 ft. Write a system of inequality that model the possible dimensions of he garden. Graph the system to show all possible solutionslet
x---------------> t<span>he length of the garden
</span>y---------------> the wide of the garden
we know that
x>=110
2x+2y <=380---------------> x+y <= 190
Part A) <span>Write a system of inequality that model the possible dimensions of he garden
</span>
the answer part A) is
x>=110
x+y <= 190
Part B) <span>Graph the system to show all possible solutions
using a graph tool
see the attached figure
the solution is the triangle show in the figure
</span><span>the possible solutions of y (wide) would be between 0 and 80 ft
</span>the possible solutions of x (length) would be between 110 ft and 190 ft
The answer is b. All numbers are natural numbers