1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
9

Evaluate without a calculator: cot -270°

Mathematics
2 answers:
Luden [163]3 years ago
6 0

Answer:

0 is the answer.

Step-by-step explanation:

<h3>#CarryOnLearning</h3>
Nat2105 [25]3 years ago
4 0

Answer:

0

Step-by-step explanation:

The cotangent function is defined as cot x = adj / opp.

The terminal side of 270 degrees is the lower half of the y-axis.  The adj side is zero (0) and the opp side is -1;

Therefore, cot (-270 degrees) = adj / opp = 0/(-1) = 0

You might be interested in
Suppose that diameters of a new species of apple have a bell-shaped distribution with a mean of 7.25cm and a standard deviation
Ulleksa [173]

Answer:

95%

Step-by-step explanation:

5 0
3 years ago
School rules permit no fewer than 2 teachers per 25 students. There are at least 245 students enrolled in the school. If x repre
NISA [10]
First, let's write down this inequality:
<span>There are at least 245 students enrolled in the school.

 y≥245

This inequality says what the sentence says!

now, the number of teachers must be:
x≥2*(y/25)
 (two times the number of groups of students of 25!)

so those two inequalities, taken together will be the answer!
</span>
6 0
3 years ago
Read 2 more answers
The bearing of a plane from an airport is 65 degrees
AleksAgata [21]

Answer:

115

idk how to explain this but u just use the protractor

8 0
4 years ago
Read 2 more answers
The graph of an exponential function is given. Which of the following is the correct equation of the function?
katen-ka-za [31]

Answer:

If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).

Step-by-step explanation:

4 0
3 years ago
The data set shows the numbers of yogurt pretzels in various bags.
Marizza181 [45]

Answer:

C

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • The diameter of the larger circle is 12.5 cm. The diameter of the smaller circle is 3.5 cm.
    7·1 answer
  • Please help i mark you as brainlist
    9·1 answer
  • Can someone solve this please?? 2/9 x 3/4
    13·2 answers
  • A Statistics class has an enrollment of 300. Out of these, 95 are taking the Actuarial Statistics major, 120 are Data Science ma
    5·1 answer
  • What is the absolute value?
    13·2 answers
  • Plz guys can you guys help me
    9·2 answers
  • What is the prime factorasation of 96
    9·2 answers
  • Write the equation of the line that passes<br> through the points (-7,-9) and (-3,-1)
    11·2 answers
  • Help me pleaseeeeeeeeeeeee
    11·2 answers
  • The distance between points A and B is 15. The coordinates of point A are (1, 18) and the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!