B because cactus' are usually in a dry environment, they close their stomata during the day to keep water vapor from leaving the plant. Instead they do their processes at night to avoid extreme water loss.
Heyo, first off the dependent variable is the variable you measure at the end of the experiment, so basically the outcome of the experiment.
Sara and Juan used the four different types of soils which was considered as the independent variable. The independent variable is the variable you change at the beginning of the experiment.
The dependent variable of the experiment which was measured last was seed germination, and plant growth.
Proteins are broken down into amino acids, while carbohydrates are broken down into sugars.
Answer:
Explanation:
From the information given:
The cell potential on mars E = + 100 mV
By using Goldman's equation:
![E_m = \dfrac{RT}{zF}In \Big (\dfrac{P_K[K^+]_{out}+P_{Na}[Na^+]_{out}+P_{Cl}[Cl^-]_{out} }{P_K[K^+]_{in}+P_{Na}[Na^+]_{in}+ P_{Cl}[Cl^-]_{in}} \Big )](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7DIn%20%5CBig%20%28%5Cdfrac%7BP_K%5BK%5E%2B%5D_%7Bout%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bout%7D%2BP_%7BCl%7D%5BCl%5E-%5D_%7Bout%7D%20%7D%7BP_K%5BK%5E%2B%5D_%7Bin%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bin%7D%2B%20P_%7BCl%7D%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%20%20%20%5CBig%20%29)
Let's take a look at the impermeable cell with respect to two species;
and the two species be Na⁺ and Cl⁻
![E_m = \dfrac{RT}{zF} In \dfrac{[K^+]_{out}}{[K^+]_{in}}](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7D%20In%20%5Cdfrac%7B%5BK%5E%2B%5D_%7Bout%7D%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
where;
z = ionic charge on the species = + 1
F = faraday constant
∴
![100 \times 10^{-3} = \Big (\dfrac{8.314 \times 298}{1\times 96485} \Big) \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20%5CBig%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B1%5Ctimes%2096485%7D%20%5CBig%29%20%5Cmathtt%7BIn%7D%20%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![3.981= \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=3.981%3D%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![exp ( 3.981) = \dfrac{4}{[K^+]_{in}} \\ \\ 53.57 = \dfrac{4}{[K^+]_{in}}](https://tex.z-dn.net/?f=exp%20%28%203.981%29%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%5C%5C%20%5C%5C%20%2053.57%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
![[K^+]_{in} = \dfrac{4}{53.57}](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B4%7D%7B53.57%7D)
![[K^+]_{in} = 0.0476](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%20%3D%200.0476)
For [Cl⁻]:
![100 \times 10^{-3} = -0.0257 \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20-0.0257%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![-3.981 = \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=-3.981%20%3D%20%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![0.01867 = \dfrac{120}{[Cl^-]_{in}}](https://tex.z-dn.net/?f=0.01867%20%3D%20%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D)
![[Cl^-]_{in} = \dfrac{120}{0.01867}](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B120%7D%7B0.01867%7D)
![[Cl^-]_{in} =6427.4](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D6427.4)
For [Na⁺]:
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![53.57= \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=53.57%3D%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![[Na^+]_{in}= 2.70](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D_%7Bin%7D%3D%202.70)
n a cross between two heterozygous individuals, the offspring would be expected to show a 3 : 1 ratio. For example, in Case 1, three-fourths of the individuals would have red (wild-type) eyes, and one-fourth would have sepia eyes.
If there are 44 offspring, how many are expected to have red eyes?
We expect three-fourths to have red eyes.
<span>34</span> of 44 = 33
If there are 44 offspring, how many are expected to have sepia eyes?
<span>14</span> of 44 = 11
Now you are ready to calculate chi-square.