Answer:
A. 0.5
B. 0.32
C. 0.75
Step-by-step explanation:
There are
- 28 students in the Spanish class,
- 26 in the French class,
- 16 in the German class,
- 12 students that are in both Spanish and French,
- 4 that are in both Spanish and German,
- 6 that are in both French and German,
- 2 students taking all 3 classes.
So,
- 2 students taking all 3 classes,
- 6 - 2 = 4 students are in French and German, bu are not in Spanish,
- 4 - 2 = 2 students are in Spanish and German, but are not in French,
- 12 - 2 = 10 students are in Spanish and French but are not in German,
- 16 - 2 - 4 - 2 = 8 students are only in German,
- 26 - 2 - 4 - 10 = 10 students are only in French,
- 28 - 2 - 2 - 10 = 14 students are only in Spanish.
In total, there are
2 + 4 + 2 + 10 + 8 + 10 +14 = 50 students.
The classes are open to any of the 100 students in the school, so
100 - 50 = 50 students are not in any of the languages classes.
A. If a student is chosen randomly, the probability that he or she is not in any of the language classes is

B. If a student is chosen randomly, the probability that he or she is taking exactly one language class is

C. If 2 students are chosen randomly, the probability that both are not taking any language classes is

So, the probability that at least 1 is taking a language class is

-5x 2/7 =
−10x/7
srry if it is wrong man but that is what i got
I think it would look like this 1/100^-10 hope dis helped
Answer:
since -3.73 is less than 1.645, we reject H₀.
Therefore this indicate that the proposed warranty should be modified
Step-by-step explanation:
Given that the data in the question;
p" = 13/20 = 0.65
Now the test hypothesis;
H₀ : p = 0.9
Hₐ : p < 0.9
Now lets determine the test statistic;
Z = (p" - p ) / √[p×(1-p)/n]
= (0.65 - 0.9) /√[0.9 × (1 - 0.9) / 20]
= -0.25 / √[0.9 × 0.1 / 20 ]
= -0.25 / √0.0045
= -0.25 / 0.067
= - 3.73
Now given that a = 0.05,
the critical value is Z(0.05) = 1.645 (form standard normal table)
Now since -3.73 is less than 1.645, we reject H₀.
Therefore this indicate that the proposed warranty should be modified
Answer:
hard
Step-by-step explanation:
I don't know because I have never learnt these things