Answer:
Step-by-step explanation:
Givens
C = 12 * pi
C = 2*pi * r
Solution
2*pi * r = 12*pi Divide both sides by 2pi
2*pi * r/ 2*pi = 12*pi/2pi
r = 6
Answer: the diameter = 2 * r
the diameter = 12
Let the number of green apples and red apples be 8x and 3x respectively.
Given: 8x-3x =35
=> 5x =35 => x=7
Hence there are 8x=56 green apples and 3x=21 red apples.Ans.
Given that the probability <span>is
modeled by the function
![y=3(257,959)^x[tex] where x is the impurity concentration and y, given as a percent, is the probability of the fuse malfunctioning.\\Then, the probability of the fuse malfunctioning for an impurity concentration of 0.17 is given by [tex]y=3(257,959)^{0.17}=3(8.316941)=24.95](https://tex.z-dn.net/?f=y%3D3%28257%2C959%29%5Ex%5Btex%5D%20%20where%20x%20is%20the%20impurity%20%0Aconcentration%20and%20y%2C%20given%20as%20a%20percent%2C%20is%20the%20probability%20of%20the%20fuse%20%0Amalfunctioning.%5C%5CThen%2C%20the%20%3C%2Fspan%3Eprobability%20of%20the%20fuse%20malfunctioning%20for%20an%20impurity%20concentration%20of%200.17%20is%20given%20by%20%5Btex%5Dy%3D3%28257%2C959%29%5E%7B0.17%7D%3D3%288.316941%29%3D24.95)
Therefore, the <span>probability of the fuse malfunctioning for an impurity concentration of 0.17 is 25% to the nearest percent.</span>
</span>
Answer:
3???
Step-by-step explanation:
The two pairs of polar coordinates for the given point (3, -3) with 0° ≤ θ < 360° are (3√2, 135°) and (3√2, 315°).
<h3>What is a polar coordinate?</h3>
A polar coordinate is a two-dimensional coordinate system, wherein each point on a plane is typically determined by a distance (r) from the pole (origin) and an angle (θ) from a reference direction (polar axis).
Next, we would determine the distance (r) and angle (θ) as follows:
r = √(3² + (-3)²)
r = √(9 + 9)
r = 3√2.
θ = tan⁻¹(-3/3)
θ = tan⁻¹(-1)
θ = 3π and 7π/4 (second and fourth quadrants).
Converting to degrees, we have:
θ = 135° and 315°.
Read more on polar coordinates here: brainly.com/question/3875211
#SPJ1
Complete Question:
Determine two pairs of polar coordinates for the point (3, -3) with 0° ≤ θ < 360°